
Coursework 1 (Strand 1)
This coursework is worth 4% and is due on 12 October at 16:00. You are asked
to implement a regular expression matcher and submit a document containing
the answers for the questions below. You can do the implementation in any
programming language you like, but you need to submit the source code with
which you answered the questions, otherwise a mark of 0% will be awarded.
You can submit your answers in a txt-file or pdf. Code send as code.

Disclaimer

It should be understood that the work you submit represents your own effort.
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures or uploaded to KEATS, which you can freely use.

If you have any questions, please send me an email in good time.

Task
The task is to implement a regular expression matcher based on derivatives of
regular expressions. The implementation should be able to deal with the usual
(basic) regular expressions

0, 1, c, r1 + r2, r1 · r2, r∗

but also with the following extended regular expressions:

[c1, c2, . . . , cn] a set of characters—for character ranges
r+ one or more times r
r? optional r
r{n} exactly n-times
r{..m} zero or more times r but no more than m-times
r{n..} at least n-times r
r{n..m} at least n-times r but no more than m-times
∼ r not-regular-expression of r

You can assume that n and m are greater or equal than 0. In the case of r{n,m}

you can also assume 0 ≤ n ≤ m.

Important! Your implementation should have explicit cases for the basic regu-
lar expressions, but also for explicit cases for the extended regular expressions.
That means do not treat the extended regular expressions by just translating
them into the basic ones. See also Question 3, where you are asked to explicitly
give the rules for nullable and der for the extended regular expressions.

1

The meanings of the extended regular expressions are

L([c1, c2, . . . , cn])
def
= {[c1], [c2], . . . , [cn]}

L(r+) def
=

∪
1≤i . L(r)i

L(r?)
def
= L(r) ∪ {[]}

L(r{n})
def
= L(r)n

L(r{..m})
def
=

∪
0≤i≤m . L(r)i

L(r{n..})
def
=

∪
n≤i . L(r)i

L(r{n..m})
def
=

∪
n≤i≤m . L(r)i

L(∼ r) def
= Σ∗ − L(r)

whereby in the last clause the set Σ∗ stands for the set of all strings over the
alphabet Σ (in the implementation the alphabet can be just what is represented
by, say, the type Char). So ∼ r means in effect “all the strings that r cannot
match”.

Be careful that your implementation of nullable and der satisfies for every regu-
lar expression r the following two properties (see also Question 3):

• nullable(r) if and only if [] ∈ L(r)

• L(der c r) = Der c (L(r))

Question 1 (Unmarked)
What is your King’s email address (you will need it in Question 5)?

Question 2 (Unmarked)
In which programming languages have you wriĴen a program (like spent at
least a day working on the program)?

Question 3
From the lectures you have seen the definitions for the functions nullable and der
for the basic regular expressions. Implement the rules for the extended regular
expressions:

2

nullable([c1, c2, . . . , cn])
def
= ?

nullable(r+) def
= ?

nullable(r?)
def
= ?

nullable(r{n})
def
= ?

nullable(r{..m})
def
= ?

nullable(r{n..})
def
= ?

nullable(r{n..m})
def
= ?

nullable(∼ r) def
= ?

der c ([c1, c2, . . . , cn])
def
= ?

der c (r+) def
= ?

der c (r?)
def
= ?

der c (r{n})
def
= ?

der c (r{..m})
def
= ?

der c (r{n..})
def
= ?

der c (r{n..m})
def
= ?

der c (∼ r) def
= ?

Remember your definitions have to satisfy the two properties

• nullable(r) if and only if [] ∈ L(r)

• L(der c r)) = Der c (L(r))

Given the definitions of nullable and der, it is easy to implement a regular ex-
pression matcher. Test your regular expression matcher with (at least) the ex-
amples:

string a{3} (a?){3} a{..3} (a?){..3} a{3..5} (a?){3..5}

[]

a
aa
aaa

aaaaa
aaaaaa

Does your matcher produce the expected results?

Question 4
As you can see, there are a number of explicit regular expressions that deal with
single or several characters, for example:

3

c matches a single character
[c1, c2, . . . , cn] matches a set of characters—for character ranges
ALL matches any character

the laĴer is useful for matching any string (for example by using ALL∗). In
order to avoid having an explicit constructor for each case, we can generalise
all these cases and introduce a single constructorCFUN(f)where f is a function
from characters to a boolean. The idea is that the function f determines which
character(s) are matched, namely those where f returns true. In this question
implement CFUN and define

nullable(CFUN(f)) def
= ?

der c (CFUN(f)) def
= ?

in your matcher and then also give definitions for

c def
= CFUN(?)

[c1, c2, . . . , cn]
def
= CFUN(?)

ALL def
= CFUN(?)

Question 5
Suppose [a-z0-9_ .-] stands for the regular expression

[a, b, c, . . . , z, 0, . . . , 9, _, ., -] .

Define in your code the following regular expression for email addresses

([a-z0-9_ .−]+) · @ · ([a-z0-9 .−]+) · . · ([a-z .]{2,6})

and calculate the derivative according to your email address. When calculating
the derivative, simplify all regular expressions as much as possible by applying
the following 7 simplification rules:

r · 0 7→ 0
0 · r 7→ 0
r · 1 7→ r
1 · r 7→ r
r + 0 7→ r
0+ r 7→ r
r + r 7→ r

Write down your simplified derivative in a readable notation using parentheses
where necessary. That means you should use the infix notation +, ·, ∗ and so
on, instead of code.

4

Implement the simplification rules in your regular expression matcher. Con-
sider the regular expression / · ∗ · (∼ (ALL∗ · ∗ · / · ALL∗)) · ∗ · / and decide
wether the following four strings are matched by this regular expression. An-
swer yes or no.

1. "/**/"

2. "/*foobar*/"

3. "/*test*/test*/"

4. "/*test/*test*/"

Question 6
Let r1 be the regular expression a · a · a and r2 be (a{19,19}) · (a?). Decidewhether
the following three strings consisting of as only can be matched by (r+1)+. Sim-
ilarly test them with (r+2)+. Again answer in all six cases with yes or no.

These are strings are meant to be entirely made up of as. Be careful when copy-
and-pasting the strings so as to not forgeĴing any a and to not introducing any
other character.

5. "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aa
aaa"

6. "aaa
aaa
aaa"

7. "aaa
aaa
aa"

5

