
Compilers and
Formal Languages (10)

Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)
Slides: KEATS (also home work is there)
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Using a compiler,
how can youmount the
perfect attack against a system?
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What is a perfect attack?

1 you can potentially completely take over a target
system

2 your attack is (nearly) undetectable
3 the victim has (almost) no chance to recover
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clean
compiler

login
(src)

login
(bin)■
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Scala
host language

my compiler (src)
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Scala

…
V1.00
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…

…

no host language
needed
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Hacking Compilers

Ken Thompson
Turing Award, 1983

Ken Thompson showed how to hide
a Trojan Horse in a compiler without
leaving any traces in the source code.
No amount of source level verifi-
cation will protect you from such
Thompson-hacks.
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1) Assume you ship the compiler as
binary and also with sources.

2) Make the compiler aware when it
compiles itself.

3) Add the Trojan horse.
4) Compile.
5) Delete Trojan horse from the sources

of the compiler.
6) Go on holiday for the rest of your

life. ;o)
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Compilers &Boeings 777
First flight in 1994. They want to achieve triple
redundancy in hardware faults.

They compile 1 Ada program to

Intel 80486
Motorola 68040 (old Macintosh’s)
AMD 29050 (RISC chips used often in laser
printers)
using 3 independent compilers.

Airbus uses C and static analysers. Recently started using
CompCert.
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Howmany strings are in L(a∗)?

[] a aa aaa aaaa …
0 1 2 3 4 …
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There aremore problems,
than there are programs.

Theremust be a problem for
which there is no program.
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Subsets

If A ⊆ B then A has fewer or equal
elements than B

A ⊆ B and B ⊆ A

then A = B
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{ , , , , }

{ , , }

5 elements

3 elements
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Newton vs Feynman

classical physics quantum physics
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TheGoal of the Talk

show you that something very
unintuitive happens with very large sets

convince you that there are more
problems than programs
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B = { , , , , }

A = { , , }

|A| = 5, |B| = 3
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B = { , , , , }

A = { , , }

then |A| ≤ |B|
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B = { , , , , }

A = { , , }

for = has to be a one-to-one mapping
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Cardinality

|A| def
= “how many elements”

A ⊆ B ⇒ |A| ≤ |B|

if there is an injective function
f : A → B then |A| ≤ |B|

∀xy. f(x) = f(y) ⇒ x = y
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Natural Numbers

N
def
= {0, 1, 2, 3, .......}

A is countable iff |A| ≤ |N|

CFL 10, King’s College London – p. 17/28



Natural Numbers

N
def
= {0, 1, 2, 3, .......}

A is countable iff |A| ≤ |N|

CFL 10, King’s College London – p. 17/28



First Question

|N − {0}| ? |N|

≥ or ≤ or = ?

x 7→ x+ 1,
|N − {0}| = |N|
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|N − {0, 1}| ? |N|

|N − O| ? |N|

O
def
= odd numbers {1, 3, 5......}

E
def
= even numbers {0, 2, 4......}
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|N ∪−N| ? |N|

N
def
= positive numbers {0, 1, 2, 3, ......}

−N
def
= negative numbers {0,−1,−2,−3, ......}
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A is countable if there exists an
injective f : A → N

A is uncountable if there does not
exist an injective f : A → N

countable: |A| ≤ |N|
uncountable: |A| > |N|

Does there exist such an A ?
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Hilbert’sHotel

…has as many rooms as there are natural numbers
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Real Numbers between
0 and 1

1

2

3

4

3 3 3 3 3 3 . . .

1 2 3 4 5 6 7

0 1 0 1 0 . . .

7 8 5 3 9 . . .

. . .

. . .

|N| < |R|
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The Set of Problems
ℵ0

1

2

3

4

0 1 2 3 4 5 . . .

0 1 0 1 0 1 . . .

0 0 0 1 1 0 0

0 0 0 0 0 . . .

1 1 0 1 1 . . .

. . .

. . .

|Progs| = |N| < |Probs|
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Halting Problem

Assume a program H that decides for all
programs A and all input data D whether

H(A,D)
def
= 1 iff A(D) terminates

H(A,D)
def
= 0 otherwise
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Halting Problem (2)

Given such a program H define the
following program C: for all programs A

C(A) def
= 0 iff H(A,A) = 0

C(A) def
= loops otherwise
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Contradiction

H(C,C) is either 0 or 1.

H(C,C) = 1 defH⇒ C(C) ↓ defC⇒ H(C,C) = 0

H(C,C) = 0 defH⇒ C(C) loops defC⇒
H(C,C) = 1

Contradiction in both cases. So H cannot exist.
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TakeHomePoints
there are sets that are more infinite than
others

even with the most powerful computer
we can imagine, there are problems that
cannot be solved by any program

in CS we actually hit quite often such
problems (halting problem)
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