
Compilers and
Formal Languages (1)

Antikythera automaton, 100 BC (Archimedes?)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS

CFL 01, King’s College London – p. 1/26



TheGoal of this Course

Write ACompiler

lexer parser code gen

CFL 01, King’s College London – p. 2/26



TheGoal of this Course

Write ACompiler

lexer parser code gen

CFL 01, King’s College London – p. 2/26

lexer input: a string
”read(n);”

lexer output: a sequence of tokens
key(read); lpar; id(n); rpar; semi



TheGoal of this Course

Write ACompiler

lexer parser code gen

CFL 01, King’s College London – p. 2/26

lexer input: a string
”read(n);”

lexer output: a sequence of tokens
key(read); lpar; id(n); rpar; semi

lexing⇒ recognising words (Stone of Rosetta)



TheGoal of this Course

Write ACompiler

lexer parser code gen

CFL 01, King’s College London – p. 2/26

parser input: a sequence of token
parser output: an abstract syntax tree

read

lpar n rpar



TheGoal of this Course

Write ACompiler

lexer parser code gen

CFL 01, King’s College London – p. 2/26

code generator:
istore 2
iload 2
ldc 10
isub
ifeq Label2
iload 2
...



TheGoal of this Course

Write ACompiler

lexer parser code gen

CFL 01, King’s College London – p. 2/26

code generator:
istore 2
iload 2
ldc 10
isub
ifeq Label2
iload 2
...

0 200 400 600 800 1,000 1,200

0

100

200

300

400

n

se
cs



The subject is quite old
Turing Machines, 1936
Regular Expressions, 1956
The first compiler for COBOL, 1957
(Grace Hopper)
But surprisingly research papers are still
published nowadays

Grace Hopper
(she made it to David Letterman’s Tonight Show,
http://www.youtube.com/watch?v=aZOxtURhfEU)

CFL 01, King’s College London – p. 3/26

http://www.youtube.com/watch?v=aZOxtURhfEU


WhyBother?
Ruby, Python, Java

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in
se
cs Python

Ruby

5 10 15 20 25 30
0
5

10
15
20
25
30

n

tim
e
in
se
cs Java

Us (after next lecture)

0 5,000 10,000
0
5

10
15
20
25
30

n

tim
e
in
se
cs

0 2 · 106 4 · 106 6 · 106
0
5

10
15
20
25
30

n
tim

e
in
se
cs

matching [a?]{n}[a]{n} and [a*]*b against a...a︸︷︷︸
n

CFL 01, King’s College London – p. 4/26



Lectures 1 - 5

transforming strings into structured data

Lexing

based on regular expressions

(recognising “words”)

Parsing
(recognising “sentences”)

CFL 01, King’s College London – p. 5/26

Stone of Rosetta



Lectures 1 - 5

transforming strings into structured data

Lexing based on regular expressions

(recognising “words”)

Parsing
(recognising “sentences”)

CFL 01, King’s College London – p. 5/26

Stone of Rosetta



Familiar Regular Expr.
[a-z0-9_.-]+ @ [a-z0-9.-]+ . [a-z.]{2,6}

re* matches 0 or more times
re+ matches 1 or more times
re? matches 0 or 1 times
re{n} matches exactly n number of times
re{n,m} matches at least n and at most m times
[...] matches any single character inside the brackets
[^...] matches any single character not inside the

brackets
a-zA-Z character ranges
\d matches digits; equivalent to [0-9]
. matches every character except newline
(re) groups regular expressions and remembers the

matched text
CFL 01, King’s College London – p. 6/26



Today

While the ultimate goal is to implement a small
compiler (a really small one for the JVM)…

Let’s start with:
a web-crawler
an email harvester
(a web-scraper)

CFL 01, King’s College London – p. 7/26



AWeb-Crawler

1 given an URL, read the corresponding webpage
2 extract all links from it
3 call the web-crawler again for all these links

CFL 01, King’s College London – p. 8/26



AWeb-Crawler

1 given an URL, read the corresponding webpage
2 if not possible print, out a problem
3 if possible, extract all links from it
4 call the web-crawler again for all these links

(we need a bound for the number of recursive calls)
(the purpose is to check all links on my own webpage)

CFL 01, King’s College London – p. 9/26



AWeb-Crawler

1 given an URL, read the corresponding webpage
2 if not possible print, out a problem
3 if possible, extract all links from it
4 call the web-crawler again for all these links

(we need a bound for the number of recursive calls)
(the purpose is to check all links on my own webpage)

CFL 01, King’s College London – p. 9/26



CFL 01, King’s College London – p. 10/26

Server

GET request

webpage

POST data Browser



Scala
A simple Scala function for reading webpages:

import io.Source

def get_page(url: String) : String = {
Source.fromURL(url).take(10000).mkString

}

get_page(”””http://www.inf.kcl.ac.uk/staff/urbanc/”””)

A slightly more complicated version for handling errors:

def get_page(url: String) : String = {
Try(Source.fromURL(url).take(10000).mkString).

getOrElse { println(s” Problem with: $url”); ””}
}

CFL 01, King’s College London – p. 11/26



Scala
A simple Scala function for reading webpages:

import io.Source

def get_page(url: String) : String = {
Source.fromURL(url).take(10000).mkString

}

get_page(”””http://www.inf.kcl.ac.uk/staff/urbanc/”””)

A slightly more complicated version for handling errors:

def get_page(url: String) : String = {
Try(Source.fromURL(url).take(10000).mkString).

getOrElse { println(s” Problem with: $url”); ””}
}

CFL 01, King’s College London – p. 11/26



Scala
A simple Scala function for reading webpages:

import io.Source

def get_page(url: String) : String = {
Source.fromURL(url).take(10000).mkString

}

get_page(”””http://www.inf.kcl.ac.uk/staff/urbanc/”””)

A slightly more complicated version for handling errors:

def get_page(url: String) : String = {
Try(Source.fromURL(url).take(10000).mkString).

getOrElse { println(s” Problem with: $url”); ””}
}

CFL 01, King’s College London – p. 11/26


