
Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk
Slides & Progs: KEATS (also homework is there)

1 Introduction, Languages 6 While-Language
2 Regular Expressions, Derivatives 7 Compilation, JVM
3 Automata, Regular Languages 8 Compiling Functional Languages
4 Lexing, Tokenising 9 Optimisations
5 Grammars, Parsing 10 LLVM

CFL 03, King’s College London – p. 1/45



(Basic) Regular Expressions
r ::= 0 nothing

| 1 empty string / ”” / []
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

How about ranges [a-z], r+ and∼ r? Do they
increase the set of languages we can recognise?

CFL 03, King’s College London – p. 2/45



Negation
Assume you have an alphabet consisting of the
letters a, b and c only. Find a (basic!) regular
expression that matches all strings except ab and ac!

CFL 03, King’s College London – p. 3/45



Automata
A deterministic finite automaton, DFA, consists of:
an alphabet Σ

a set of states Qs
one of these states is the start state Q0

some states are accepting states F, and
there is transition function δ

which takes a state as argument and a character and
produces a new state; this function might not be everywhere
defined⇒ partial function

A(Σ, Qs, Q0, F, δ)

CFL 03, King’s College London – p. 4/45



Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

the start state can be an accepting state
it is possible that there is no accepting state
all states might be accepting (but this does not
necessarily mean all strings are accepted)

CFL 03, King’s College London – p. 5/45



Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

for this automaton δ is the function

(Q0, a) → Q1 (Q1, a) → Q4 (Q4, a) → Q4
(Q0, b) → Q2 (Q1, b) → Q2 (Q4, b) → Q4

…

CFL 03, King’s College London – p. 5/45



Accepting a String
Given

A(Σ, Qs, Q0, F, δ)

you can define

δ̂(Q, []) def
= Q

δ̂(Q, c :: s) def
= δ̂(δ(Q, c), s)

Whether a string s is accepted by A?

δ̂(Q0, s) ∈ F

CFL 03, King’s College London – p. 6/45



Accepting a String
Given

A(Σ, Qs, Q0, F, δ)

you can define

δ̂(Q, []) def
= Q

δ̂(Q, c :: s) def
= δ̂(δ(Q, c), s)

Whether a string s is accepted by A?

δ̂(Q0, s) ∈ F

CFL 03, King’s College London – p. 6/45



Regular Languages

A language is a set of strings.

A regular expression specifies a language.

A language is regular iff there exists a regular
expression that recognises all its strings.

not all languages are regular, e.g. anbn is not

CFL 03, King’s College London – p. 7/45



Regular Languages

A language is a set of strings.

A regular expression specifies a language.

A language is regular iff there exists a regular
expression that recognises all its strings.

not all languages are regular, e.g. anbn is not

CFL 03, King’s College London – p. 7/45



Regular Languages (2)

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

CFL 03, King’s College London – p. 8/45



Non-Deterministic
Finite Automata

N(Σ, Qs, Qs0, F, ρ)
A non-deterministic finite automaton (NFA) consists
of:
a finite set of states, Qs
some these states are the start states, Qs0
some states are accepting states, and
there is transition relation, ρ

(Q1, a) → Q2
(Q1, a) → Q3

…

(Q1, a) → {Q2, Q3}

CFL 03, King’s College London – p. 9/45



Non-Deterministic
Finite Automata

N(Σ, Qs, Qs0, F, ρ)
A non-deterministic finite automaton (NFA) consists
of:
a finite set of states, Qs
some these states are the start states, Qs0
some states are accepting states, and
there is transition relation, ρ

(Q1, a) → Q2
(Q1, a) → Q3

… (Q1, a) → {Q2, Q3}

CFL 03, King’s College London – p. 9/45



AnNFA Example

Q0start Q1 Q2

b

b

a

a

a, b

a

CFL 03, King’s College London – p. 10/45



Another Example
For the regular expression (.∗)a (.{n})bc

0start 1 2 . . . . . . n+ 1 n+ 2 n+ 3

∗
a ∗ ∗ ∗ ∗ b c

n

Note the star-transitions: accept any character.

CFL 03, King’s College London – p. 11/45



Two Epsilon NFA Examples

q0start

q1

q2

ϵ

ϵ

a

a

b

r1start

r2

r3
b

a

ϵ a

CFL 03, King’s College London – p. 12/45



Thompson: Rexp to ϵNFA

0 start

1 start

c start c

CFL 03, King’s College London – p. 13/45



Case r1 · r2
By recursion we are given two automata:

r1 r2

start
start

start
. . .

start

start
. . .

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via ϵ-transitions to the starting state of the second
automaton.

CFL 03, King’s College London – p. 14/45



Case r1 · r2
By recursion we are given two automata:

r1 · r2

start
start

start
. . . . . .

ϵs

ϵs

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via ϵ-transitions to the starting state of the second
automaton.

CFL 03, King’s College London – p. 14/45



Case r1 + r2
By recursion we are given two automata:

r1

r2

start

start

start

. . .

. . .

We can just put both automata together.
CFL 03, King’s College London – p. 15/45



Case r1 + r2
By recursion we are given two automata:

r1 + r2

start

start

start

. . .

. . .

We can just put both automata together.
CFL 03, King’s College London – p. 15/45



Case r∗

By recursion we are given an automaton for r:

r

start

start
. . .

Why can’t we just have an epsilon transition from
the accepting states to the starting state?

CFL 03, King’s College London – p. 16/45



Case r∗
By recursion we are given an automaton for r:

r∗

start . . .ϵ
ϵ

ϵ

ϵ

ϵ

Why can’t we just have an epsilon transition from
the accepting states to the starting state?

CFL 03, King’s College London – p. 16/45



Case r∗
By recursion we are given an automaton for r:

r∗

start . . .ϵ
ϵ

ϵ

ϵ

ϵ

Why can’t we just have an epsilon transition from
the accepting states to the starting state?

CFL 03, King’s College London – p. 16/45



NFA Breadth-First: a?{n}·a{n}

5 10 15 20 25 30
0
5

10
15
20
25
30

as

tim
e
in

se
cs

Python
Ruby
my NFA

CFL 03, King’s College London – p. 17/45



NFA Breadth-First:(a∗)∗ · b

10 20 30 40 50 60 70 80 90 100
0
5

10
15
20
25
30

as

tim
e
in

se
cs

Java 8
Python
JavaScript
Swift
Dart
my NFA

CFL 03, King’s College London – p. 18/45



NFADepth-First: a?{n} · a{n}

5 10 15 20 25 30
0
5

10
15
20
25
30

as

tim
e
in

se
cs

Python
Ruby
my NFA

CFL 03, King’s College London – p. 19/45



NFADepth-First: (a∗)∗ · b

15 30
0
5

10
15
20
25
30

as

tim
e
in

se
cs

Java 8
Python
JavaScript
Swift
Dart
my NFA

The punchline is that many existing libraries do
depth-first search in NFAs (with backtracking).

CFL 03, King’s College London – p. 20/45



Subset Construction

CFL 03, King’s College London – p. 21/45

Q0start

Q1

Q2

1

0, 1

0, 1
nodes * 0 1

{} *

{} {}
s:

{0} *

{0} {0, 1}

{1} *

{2} {2}

{2}

* {} {}

{0, 1} *

{0, 2} {0, 1, 2}

{0, 2}

* {0} {0, 1}

{1, 2}

* {2} {2}

{0, 1, 2}

* {0, 2} {0, 1, 2}



Subset Construction

CFL 03, King’s College London – p. 21/45

Q0start

Q1

Q2

1

0, 1

0, 1
nodes * 0 1

{} * {} {}

s:

{0} *

{0} {0, 1}

{1} *

{2} {2}

{2}

* {} {}

{0, 1} *

{0, 2} {0, 1, 2}

{0, 2}

* {0} {0, 1}

{1, 2}

* {2} {2}

{0, 1, 2}

* {0, 2} {0, 1, 2}



Subset Construction

CFL 03, King’s College London – p. 21/45

Q0start

Q1

Q2

1

0, 1

0, 1
nodes * 0 1

{} * {} {}

s:

{0} * {0} {0, 1}
{1} * {2} {2}
{2}

*

{} {}
{0, 1} *

{0, 2} {0, 1, 2}

{0, 2}

* {0} {0, 1}

{1, 2}

* {2} {2}

{0, 1, 2}

* {0, 2} {0, 1, 2}



Subset Construction

CFL 03, King’s College London – p. 21/45

Q0start

Q1

Q2

1

0, 1

0, 1
nodes * 0 1

{} * {} {}

s:

{0} * {0} {0, 1}
{1} * {2} {2}
{2}

*

{} {}
{0, 1} * {0, 2} {0, 1, 2}
{0, 2}

*

{0} {0, 1}
{1, 2}

*

{2} {2}
{0, 1, 2}

*

{0, 2} {0, 1, 2}



Subset Construction

CFL 03, King’s College London – p. 21/45

Q0start

Q1

Q2

1

0, 1

0, 1
nodes * 0 1

{} * {} {}
s: {0} * {0} {0, 1}
{1} * {2} {2}
{2} * {} {}

{0, 1} * {0, 2} {0, 1, 2}
{0, 2} * {0} {0, 1}
{1, 2} * {2} {2}

{0, 1, 2} * {0, 2} {0, 1, 2}



TheResult

{0}start {0, 1}

{1, 2}

{0, 2}

{1}

{2}

{0, 1, 2}

{}

0

1

10
1

0

0, 1
0, 1

0, 1

1
0

0, 1

CFL 03, King’s College London – p. 22/45



Removing Dead States

DFA: (original) NFA:

{0}start {0, 1}

{0, 2} {0, 1, 2}

0

1

10
1

0

1
0

Q0start

Q1

Q2

1

0, 1

0, 1

CFL 03, King’s College London – p. 23/45



Subset Construction (ϵNFA)

CFL 03, King’s College London – p. 24/45

Q0start

Q1

Q2

ϵ

ϵ

a

a

b

nodes * a b
{} *

{} {}

{0} *

{0, 1, 2} {2}

{1} *

{1} {}

{2}

* {} {2}

{0, 1} *

{0, 1, 2} {2}

{0, 2}

* {0, 1, 2} {2}

{1, 2}

* {1} {2}
s:

{0, 1, 2}

* {0, 1, 2} {2}



Subset Construction (ϵNFA)

CFL 03, King’s College London – p. 24/45

Q0start

Q1

Q2

ϵ

ϵ

a

a

b

nodes * a b
{} * {} {}
{0} *

{0, 1, 2} {2}

{1} *

{1} {}

{2}

* {} {2}

{0, 1} *

{0, 1, 2} {2}

{0, 2}

* {0, 1, 2} {2}

{1, 2}

* {1} {2}
s:

{0, 1, 2}

* {0, 1, 2} {2}



Subset Construction (ϵNFA)

CFL 03, King’s College London – p. 24/45

Q0start

Q1

Q2

ϵ

ϵ

a

a

b

nodes * a b
{} * {} {}
{0} * {0, 1, 2} {2}
{1} * {1} {}
{2}

*

{} {2}
{0, 1} *

{0, 1, 2} {2}

{0, 2}

* {0, 1, 2} {2}

{1, 2}

* {1} {2}
s:

{0, 1, 2}

* {0, 1, 2} {2}



Subset Construction (ϵNFA)

CFL 03, King’s College London – p. 24/45

Q0start

Q1

Q2

ϵ

ϵ

a

a

b

nodes * a b
{} * {} {}
{0} * {0, 1, 2} {2}
{1} * {1} {}
{2}

*

{} {2}
{0, 1} * {0, 1, 2} {2}
{0, 2}

*

{0, 1, 2} {2}
{1, 2}

*

{1} {2}

s:

{0, 1, 2}

*

{0, 1, 2} {2}



Subset Construction (ϵNFA)

CFL 03, King’s College London – p. 24/45

Q0start

Q1

Q2

ϵ

ϵ

a

a

b

nodes * a b
{} * {} {}
{0} * {0, 1, 2} {2}
{1} * {1} {}
{2} * {} {2}

{0, 1} * {0, 1, 2} {2}
{0, 2} * {0, 1, 2} {2}
{1, 2} * {1} {2}

s: {0, 1, 2} * {0, 1, 2} {2}



TheResult

{0, 1, 2}start {0, 2}

{0, 1}

{1, 2}

{0}

{1}

{2}

{}

a

b a

b

a

b

a
b

a b
a

b

b

a

a, b

CFL 03, King’s College London – p. 25/45



Removing Dead States
DFA: (original) NFA:

{0, 1, 2}start {2} {}

a

b

b

a

a, b

Q0start

Q1

Q2

ϵ

ϵ

a

a

b
CFL 03, King’s College London – p. 26/45



Regexps and Automata

Regexps NFAs DFAs

minimal
DFAs

Thompson’s
construction

subset
construction

minimisation

CFL 03, King’s College London – p. 27/45



Regexps and Automata

Regexps NFAs DFAs
minimal
DFAs

Thompson’s
construction

subset
construction

minimisation

CFL 03, King’s College London – p. 27/45



DFAMinimisation
1 Take all pairs (q, p) with q ̸= p
2 Mark all pairs that accepting and non-accepting

states
3 For all unmarked pairs (q, p) and all characters c

test whether
(δ(q, c), δ(p, c))

are marked. If yes in at least one case, then also
mark (q, p).

4 Repeat last step until no change.
5 All unmarked pairs can be merged.

CFL 03, King’s College London – p. 28/45



Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b

Q0 Q1 Q2 Q3

Q1

Q2

Q3

Q4 ⋆ ⋆ ⋆ ⋆

CFL 03, King’s College London – p. 29/45



Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b
Q0Q1Q2Q3

Q1
Q2
Q3
Q4 ⋆ ⋆ ⋆ ⋆

⋆ ⋆

⋆
⋆

Q0,2start Q1,3 Q4

a

b

b

a

a, b

minimal automaton
CFL 03, King’s College London – p. 30/45



Alternatives

Q0start Q1

Q2 Q3

Q4
a a

a, b

a
a

b
b

b

b
exchange initial / accepting states

reverse all edges

subset construction⇒ DFA

remove dead states

repeat once more

⇒minimal DFA

CFL 03, King’s College London – p. 31/45



Alternatives

Q0 Q1

Q2 Q3

Q4 start
a a

a, b

a
a

b
b

b

b
exchange initial / accepting states

reverse all edges

subset construction⇒ DFA

remove dead states

repeat once more

⇒minimal DFA

CFL 03, King’s College London – p. 31/45



Alternatives

Q0 Q1

Q2 Q3

Q4 start
a a

a, b

a
a

b
b

b

b
exchange initial / accepting states

reverse all edges

subset construction⇒ DFA

remove dead states

repeat once more

⇒minimal DFA

CFL 03, King’s College London – p. 31/45



Alternatives

Q0 Q1

Q2 Q3

Q4 start
a a

a, b

a
a

b
b

b

b
exchange initial / accepting states

reverse all edges

subset construction⇒ DFA

remove dead states

repeat once more

⇒minimal DFA

CFL 03, King’s College London – p. 31/45



Alternatives

Q0 Q1

Q2 Q3

Q4 start
a a

a, b

a
a

b
b

b

b
exchange initial / accepting states

reverse all edges

subset construction⇒ DFA

remove dead states

repeat once more

⇒minimal DFA

CFL 03, King’s College London – p. 31/45



Alternatives

Q0 Q1

Q2 Q3

Q4 start
a a

a, b

a
a

b
b

b

b
exchange initial / accepting states

reverse all edges

subset construction⇒ DFA

remove dead states

repeat once more⇒minimal DFA CFL 03, King’s College London – p. 31/45



Regexps and Automata

Regexps NFAs DFAs
minimal
DFAs

Thompson’s
construction

subset
construction

minimisation

CFL 03, King’s College London – p. 32/45



Regexps and Automata

Regexps NFAs DFAs
minimal
DFAs

Thompson’s
construction

subset
construction

minimisation

CFL 03, King’s College London – p. 32/45



DFA to Rexp

Q0start Q1 Q2

a

b

b

a
a

b

How to get from a DFA to a regular expression?

CFL 03, King’s College London – p. 33/45



Q0start Q1 Q2

a

b

b

a
a

b

You know how to solve since school days, no?

Q0 = 2 Q0 + 3 Q1 + 4 Q2
Q1 = 2 Q0 + 3 Q1 + 1 Q2
Q2 = 1 Q0 + 5 Q1 + 2 Q2

CFL 03, King’s College London – p. 34/45



Q0start Q1 Q2

a

b

b

a
a

b

You know how to solve since school days, no?

Q0 = 2 Q0 + 3 Q1 + 4 Q2
Q1 = 2 Q0 + 3 Q1 + 1 Q2
Q2 = 1 Q0 + 5 Q1 + 2 Q2

CFL 03, King’s College London – p. 34/45



Q0start Q1 Q2

a

b

b

a
a

b

Q0 = Q0 b+Q1 b+Q2 b+ 1
Q1 = Q0 a
Q2 = Q1 a+Q2 a

CFL 03, King’s College London – p. 35/45



Q0start Q1 Q2

a

b

b

a
a

b

Q0 = Q0 b+Q1 b+Q2 b+ 1
Q1 = Q0 a
Q2 = Q1 a+Q2 a

CFL 03, King’s College London – p. 35/45



Q0start Q1 Q2

a

b

b

a
a

b

Q0 = Q0 b+Q1 b+Q2 b+ 1
Q1 = Q0 a
Q2 = Q1 a+Q2 a

CFL 03, King’s College London – p. 35/45

substitute Q1 into Q0 & Q2:
Q0 = Q0 b+Q0 a b+Q2 b+ 1
Q2 = Q0 a a+Q2 a



Q0start Q1 Q2

a

b

b

a
a

b

Q0 = Q0 b+Q1 b+Q2 b+ 1
Q1 = Q0 a
Q2 = Q1 a+Q2 a

CFL 03, King’s College London – p. 35/45

substitute Q1 into Q0 & Q2:
Q0 = Q0 b+Q0 a b+Q2 b+ 1
Q2 = Q0 a a+Q2 a

simplifying Q0:
Q0 = Q0 (b+ a b) +Q2 b+ 1
Q2 = Q0 a a+Q2 a



Q0start Q1 Q2

a

b

b

a
a

b

Q0 = Q0 b+Q1 b+Q2 b+ 1
Q1 = Q0 a
Q2 = Q1 a+Q2 a

CFL 03, King’s College London – p. 35/45

substitute Q1 into Q0 & Q2:
Q0 = Q0 b+Q0 a b+Q2 b+ 1
Q2 = Q0 a a+Q2 a

simplifying Q0:
Q0 = Q0 (b+ a b) +Q2 b+ 1
Q2 = Q0 a a+Q2 a

Arden’s Lemma:

If q = q r+ s then q = s r∗



Q0start Q1 Q2

a

b

b

a
a

b

Q0 = Q0 b+Q1 b+Q2 b+ 1
Q1 = Q0 a
Q2 = Q1 a+Q2 a

CFL 03, King’s College London – p. 35/45

substitute Q1 into Q0 & Q2:
Q0 = Q0 b+Q0 a b+Q2 b+ 1
Q2 = Q0 a a+Q2 a

simplifying Q0:
Q0 = Q0 (b+ a b) +Q2 b+ 1
Q2 = Q0 a a+Q2 a

Arden for Q2:
Q0 = Q0 (b+ a b) +Q2 b+ 1
Q2 = Q0 a a (a∗)

Arden’s Lemma:

If q = q r+ s then q = s r∗



Q0start Q1 Q2

a

b

b

a
a

b

Q0 = Q0 b+Q1 b+Q2 b+ 1
Q1 = Q0 a
Q2 = Q1 a+Q2 a

CFL 03, King’s College London – p. 35/45

substitute Q1 into Q0 & Q2:
Q0 = Q0 b+Q0 a b+Q2 b+ 1
Q2 = Q0 a a+Q2 a

simplifying Q0:
Q0 = Q0 (b+ a b) +Q2 b+ 1
Q2 = Q0 a a+Q2 a

Arden for Q2:
Q0 = Q0 (b+ a b) +Q2 b+ 1
Q2 = Q0 a a (a∗)

Substitute Q2 and simplify:
Q0 = Q0 (b+ a b+ a a (a∗) b) + 1



Q0start Q1 Q2

a

b

b

a
a

b

Q0 = Q0 b+Q1 b+Q2 b+ 1
Q1 = Q0 a
Q2 = Q1 a+Q2 a

CFL 03, King’s College London – p. 35/45

substitute Q1 into Q0 & Q2:
Q0 = Q0 b+Q0 a b+Q2 b+ 1
Q2 = Q0 a a+Q2 a

simplifying Q0:
Q0 = Q0 (b+ a b) +Q2 b+ 1
Q2 = Q0 a a+Q2 a

Arden for Q2:
Q0 = Q0 (b+ a b) +Q2 b+ 1
Q2 = Q0 a a (a∗)

Substitute Q2 and simplify:
Q0 = Q0 (b+ a b+ a a (a∗) b) + 1

Arden again for Q0:
Q0 = (b+ a b+ a a (a∗) b)∗

Arden’s Lemma:

If q = q r+ s then q = s r∗



Q0start Q1 Q2

a

b

b

a
a

b

Q0 = Q0 b+Q1 b+Q2 b+ 1
Q1 = Q0 a
Q2 = Q1 a+Q2 a

CFL 03, King’s College London – p. 35/45

substitute Q1 into Q0 & Q2:
Q0 = Q0 b+Q0 a b+Q2 b+ 1
Q2 = Q0 a a+Q2 a

simplifying Q0:
Q0 = Q0 (b+ a b) +Q2 b+ 1
Q2 = Q0 a a+Q2 a

Arden for Q2:
Q0 = Q0 (b+ a b) +Q2 b+ 1
Q2 = Q0 a a (a∗)

Substitute Q2 and simplify:
Q0 = Q0 (b+ a b+ a a (a∗) b) + 1

Arden again for Q0:
Q0 = (b+ a b+ a a (a∗) b)∗

Finally:
Q0 = (b+ a b+ a a (a∗) b)∗

Q1 = (b+ a b+ a a (a∗) b)∗ a
Q2 = (b+ a b+ a a (a∗) b)∗ a a (a∗)



Q0start Q1 Q2

a

b

b

a
a

b

Q0 = Q0 b+Q1 b+Q2 b+ 1
Q1 = Q0 a
Q2 = Q1 a+Q2 a

CFL 03, King’s College London – p. 35/45

Finally:
Q0 = (b+ a b+ a a (a∗) b)∗

Q1 = (b+ a b+ a a (a∗) b)∗ a
Q2 = (b+ a b+ a a (a∗) b)∗ a a (a∗)



Regexps and Automata

Regexps NFAs DFAs
minimal
DFAs

Thompson’s
construction

subset
construction

minimisation

CFL 03, King’s College London – p. 36/45



Regular Languages (3)

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Why is every finite set of strings a regular language?

CFL 03, King’s College London – p. 37/45



Regular Languages (3)

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Why is every finite set of strings a regular language?

CFL 03, King’s College London – p. 37/45



Regexps and Automata

Regexps NFAs DFAs
minimal
DFAs

Thompson’s
construction

subset
construction

minimisation

Brzozowski’s
method

CFL 03, King’s College London – p. 38/45



Regular Languages

Two equivalent definitions:

A language is regular iff there exists a regular expres-
sion that recognises all its strings.
A language is regular iff there exists an automaton
that recognises all its strings.

for example anbn is not regular

CFL 03, King’s College London – p. 39/45



Negation
Regular languages are closed under negation:

q0start q1 q2

a

b

b

a
a

b

But requires that the automaton is completed!

CFL 03, King’s College London – p. 40/45



Negation
Regular languages are closed under negation:

q0start q1 q2

a

b

b

a
a

b

But requires that the automaton is completed!

CFL 03, King’s College London – p. 40/45



Housekeeping

CW 2

The deadline for CW2 is 6 November (thanks to
Arshdeep Pareek for pointing this out).

CFL 03, King’s College London – p. 41/45



I always thought dfa’s needed a transition for
each state for each character, and if not it would
be an nfa not a dfa. Is there an example that dis-
proves this?

CFL 03, King’s College London – p. 42/45



CFL 03, King’s College London – p. 43/45



CFL 03, King’s College London – p. 43/45



CFL 03, King’s College London – p. 43/45



CFL 03, King’s College London – p. 43/45



CFL 03, King’s College London – p. 43/45



CFL 03, King’s College London – p. 43/45



CFL 03, King’s College London – p. 43/45



CFL 03, King’s College London – p. 43/45



CFL 03, King’s College London – p. 43/45



CFL 03, King’s College London – p. 43/45



CFL 03, King’s College London – p. 43/45



CFL 03, King’s College London – p. 43/45



Do the regular expression matchers in Python
and Java 8 have more features than the one im-
plemented in this module? Or is there another
reason for their inefficiency?

CFL 03, King’s College London – p. 44/45


