
CSCI 742 - Compiler Construction

Lecture 38
Register Allocation

Instructor: Hossein Hojjat

April 27, 2018

Register Machines

• Debate topic: stack or register architecture?

see e.g. Yunhe Shi et al. “Virtual Machine Showdown: Stack Versus Registers”
ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 4, 2008

Register Machines Benefit:

• Closer to modern CPUs (RISC architecture) and control-flow graphs

Examples: • RISC: ARM architecture, RISC-V

• CISC: x86 architecture

Directly Addressable RAM

Large - GB, slow even with cache

R0 R1 R2 R31
Few fast
Registers

1

Basic Instructions of Register Machines

• Ri ← Mem[Rj] load

• Mem[Rj] ← Ri store

• Ri ← Rj ⊕ Rk compute: for an operation ⊕

Efficient register machine code uses as few loads and stores as possible

2

State Mapped to Register Machine

Both dynamically allocated heap and stack expand

• Heap need not be contiguous; can request more
memory from the OS if needed

• Stack grows downwards

Heap is more general:

• Can allocate, read/write, and deallocate, in any order

• Garbage Collector does deallocation automatically
- Must be able to find free space among used one,
group free blocks into larger ones (compaction),...

Stack is more efficient:

• Allocation is simple: increment, decrement

• Top of stack pointer (SP) is often a register

• If stack grows towards smaller addresses:
- to allocate N bytes on stack (push): SP := SP −N

- to deallocate N bytes on stack (pop): SP := SP +N

Stack

Static Globals

Constants

Heap

Free Memory

0

50KB

10MB

1GB

SP

Exact picture may
depend on hardware
and operating system

()

3

JVM vs. General Register Machine Code

• Naïve Correct Translation

JVM: Register Machine:
imul R1 ← Mem[SP]

SP = SP + 4
R2 ← Mem[SP]
R2 ← R1 * R2

Mem[SP] ← R2

4

Using Registers

• Variables usually refer to memory

• &x yields a memory location

• Need to load variables into registers to perform operations on them

1. Load from memory into registers

2. Perform operation on registers

3. Store results from registers back to memory

5

Example: How many variables?

• Do we need 7 distinct registers if we wish to avoid load and stores?

• Variables: x , y , z , xy , yz , xz , r

x = m[0];

y = m[1];

xy = x * y;

z = m[2];

yz = y*z;

xz = x*z;

r = xy + yz;

m[3] = r + xz;

• Can do it with 5 only!

6

Example: How many variables?

• Do we need 7 distinct registers if we wish to avoid load and stores?

• Variables: x , y , z , xy , yz , xz , r

x = m[0]; x = m[0];

y = m[1]; y = m[1];

xy = x * y; xy = x * y;

z = m[2]; z = m[2];

yz = y*z; yz = y*z;

xz = x*z; y = x*z; // reuse y

r = xy + yz; x = xy + yz; // reuse x

m[3] = r + xz; m[3] = x + y;

• Can do it with 5 only!

6

Idea of Register Allocation

7

x=m[0] y=m[1] xy=x*y z=m[2] yz=y*z xz=x*z r=xy+yz m[3]=r+xz

{} {x} {x,y} {x,y,xy} {x,z,yz,xy} {xz,yz,xy} {r,xz} {}{x,y,z,xy}

x
y

z
xy
yz
xz
r

program: ; ; ; ; ; ; ;
live variable analysis result:

Idea of Register Allocation

• Each color denotes a register
• Avoid overlap of same colors
• 4 registers are enough for this 7-variable program 7

x=m[0] y=m[1] xy=x*y z=m[2] yz=y*z xz=x*z r=xy+yz m[3]=r+xz

{} {x} {x,y} {x,y,xy} {x,z,yz,xy} {xz,yz,xy} {r,xz} {}

live variable analysis result:

{x,y,z,xy}

x
y

z
xy
yz
xz
r

R1

R2

R3

R4

program: ; ; ; ; ; ; ;

Idea of Register Allocation

• Each color denotes a register
• Avoid overlap of same colors
• 4 registers are enough for this 7-variable program 7

x=m[0] y=m[1] xy=x*y z=m[2] yz=y*z xz=x*z r=xy+yz m[3]=r+xz

{} {x} {x,y} {x,y,xy} {x,z,yz,xy} {xz,yz,xy} {r,xz} {}

live variable analysis result:

{x,y,z,xy}

x
y

z
xy
yz
xz
r

R1

R2

R3

R4

x
y yz

z xz
xy r

program: ; ; ; ; ; ; ;

Idea of Register Allocation

• For each pair of variables determine if
there is a point at which they are both alive

• Construct interference graph

xy

y

z x

xz

yz r

7

x=m[0] y=m[1] xy=x*y z=m[2] yz=y*z xz=x*z r=xy+yz m[3]=r+xz

{} {x} {x,y} {x,y,xy} {x,z,yz,xy} {xz,yz,xy} {r,xz} {}

live variable analysis result:

{x,y,z,xy}

x
y

z
xy
yz
xz
r

program: ; ; ; ; ; ; ;

Idea of Register Allocation

• For each pair of variables determine if
there is a point at which they are both alive

• Construct interference graph

xy

y

z x

xz

yz r

7

x=m[0] y=m[1] xy=x*y z=m[2] yz=y*z xz=x*z r=xy+yz m[3]=r+xz

{} {x} {x,y} {x,y,xy} {x,z,yz,xy} {xz,yz,xy} {r,xz} {}

live variable analysis result:

{x,y,z,xy}

x
y

z
xy
yz
xz
r

program: ; ; ; ; ; ; ;

Idea of Register Allocation

• For each pair of variables determine if
there is a point at which they are both alive

• Construct interference graph

xy

y

z x

xz

yz r

7

x=m[0] y=m[1] xy=x*y z=m[2] yz=y*z xz=x*z r=xy+yz m[3]=r+xz

{} {x} {x,y} {x,y,xy} {x,z,yz,xy} {xz,yz,xy} {r,xz} {}{x,y,z,xy}

x
y

z
xy
yz
xz
r

program: ; ; ; ; ; ; ;
live variable analysis result:

Idea of Register Allocation

• Need to assign colors (register numbers) to
nodes such that:

• If there is an edge between nodes, then those
nodes have different colors

• Standard graph vertex coloring problem

xy:4

y:2

z:3 x:1

xz:3

yz:2 r:4

7

x=m[0] y=m[1] xy=x*y z=m[2] yz=y*z xz=x*z r=xy+yz m[3]=r+xz

{} {x} {x,y} {x,y,xy} {x,z,yz,xy} {xz,yz,xy} {r,xz} {}

live variable analysis result:

{x,y,z,xy}

x
y

z
xy
yz
xz
r

program: ; ; ; ; ; ; ;

Register Interference Graph (RIG)

• Indicate whether there exists a point of time where both variables
are alive

• Look at the sets of live variables at all program points after running
live-variable analysis

• If two variables occur together, draw an edge

• We aim to assign different registers to such these variables

• Finding assignment of variables to K registers:
corresponds to coloring graph using K colors

8

Graph Coloring Problem

xy

y

z x

xz

yz r

• NP hard

• In practice, there are heuristics that work for typical graphs

• If we cannot fit it all variables into registers, perform a spill:
Store variable into memory and load later when needed

9

Heuristic for Coloring with K Colors

Simplify:

• If there is a node with less than K neighbors, we will always be able to color it!

• So we can remove such node from the graph
- (if it exists, otherwise remove other node)

• This reduces graph size. It is useful, even though incomplete

(e.g. can color planar by at most 4 colors, yet can have nodes with many neighbors)

10

xy

y

z x

xz

yz r

z

xy

y

z x

xz

yz

xy

y

z x
yz

xy

y

z x

xy

y

z

y

z

Heuristic for Coloring with K Colors

Select:

• Assign colors backwards, adding nodes that were removed

• If the node was removed because it had < K neighbors, we will always
find a color

• If there are multiple possibilities, we can choose any color

10

xy:4

y:2

z:3 x:1

xz:3

yz:2 r:4

z:3

xy:4

y:2

z:3 x:1

xz:3

yz:2

xy:4

y:2

z:3 x:1
yz:2

xy:4

y:2

z:3 x:1

xy:4

y:2

z:3

y:2

z:3

Use Computed Registers

xy:4

y:2

z:3 x:1

xz:3

yz:2 r:4

x = m[0];
y = m[1];
xy = x * y;
z = m[2];
yz = y*z;
xz = x*z;
r = xy + yz;
m[3] = res1 + xz;

R1 = m[0]
R2 = m[1]
R4 = R1*R2
R3 = m[2]
R2 = R2*R3
R3 = R1*R3
R4 = R4 + R2
m[3] = R4 + R3

11

Summary of Heuristic for Coloring

Simplify (forward, safe):
If there is a node with less than K neighbors, we will always be able to
color it, so we can remove it from the graph

Potential Spill (forward, speculative):
If every node has K or more neighbors, we still remove one of them we
mark it as node for potential spilling. Then remove it and continue

Select (backward):
Assign colors backwards, adding nodes that were removed

- If we find a node that was spilled, we check if we are lucky, that we
can color it. If yes, continue

- If not, insert instructions to save and load values from memory
(actual spill)
Restart with new graph
(graph is now easier to color as we killed a variable)

12

