Compilers and Formal Languages

Email: christian.urban at kcl.ac.uk Slides & Progs: KEATS (also homework is there)

1 Introduction, Languages	6 While-Language
2 Regular Expressions, Derivatives	7 Compilation, JVM
3 Automata, Regular Languages	8 Compiling Functional Languages
4 Lexing, Tokenising	9 Optimisations
5 Grammars, Parsing	10 LLVM

What Parsing is Not

Usually parsing does not check semantic correctness, e.g.

- whether a function is not used before it is defined
- whether a function has the correct number of arguments or are of correct type
- whether a variable can be declared twice in a scope

Regular Languages

While regular expressions are very useful for lexing, there is no regular expression that can recognise the language $a^n b^n$.

((((()))))) vs. (((())))))

So we cannot find out with regular expressions whether parentheses are matched or unmatched. Also regular expressions are not recursive, e.g. (1 + 2) + 3.

Hierarchy of Languages

all languages

decidable languages

context sensitive languages

context-free languages

regular languages

Time flies like an arrow. Fruit flies like bananas.

CFGs A context-free grammar G consists of

- a finite set of nonterminal symbols (e.g. A upper case)
- a finite set terminal symbols or tokens (lower case)
- a start symbol (which must be a nonterminal)
- a set of rules

A ::= rhs

where *rhs* are sequences involving terminals and nonterminals, including the empty sequence ϵ .

CFGs A context-free grammar G consists of

- a finite set of nonterminal symbols (e.g. A upper case)
- a finite set terminal symbols or tokens (lower case)
- a start symbol (which must be a nonterminal)
- a set of rules

A ::= rhs

where *rhs* are sequences involving terminals and nonterminals, including the empty sequence ϵ .

We also allow rules

 $\mathbf{A} ::= rhs_1 | rhs_2 | \dots$

Palindromes

A grammar for palindromes over the alphabet $\{a, b\}$:

 $S ::= a \cdot S \cdot a$ $S ::= b \cdot S \cdot b$ S ::= a S ::= b $S ::= \epsilon$

Palindromes

A grammar for palindromes over the alphabet $\{a, b\}$:

$$\mathbf{S} ::= \mathbf{a} \cdot \mathbf{S} \cdot \mathbf{a} \mid \mathbf{b} \cdot \mathbf{S} \cdot \mathbf{b} \mid \mathbf{a} \mid \mathbf{b} \mid \mathbf{\epsilon}$$

Arithmetic Expressions

$$E ::= 0 | 1 | 2 | ... | 9$$
$$| E \cdot + \cdot E$$
$$| E \cdot - \cdot E$$
$$| E \cdot * \cdot E$$
$$| (\cdot E \cdot)$$

Arithmetic Expressions

9

$$E ::= 0 | 1 | 2 | ...$$
$$| E \cdot + \cdot E$$
$$| E \cdot - \cdot E$$
$$| E \cdot * \cdot E$$
$$| (\cdot E \cdot)$$

1 + 2 * 3 + 4

A CFG Derivation

- Begin with a string containing only the start symbol, say S
- 2. Replace any nonterminal X in the string by the right-hand side of some production X ::= rhs
- 3. Repeat 2 until there are no nonterminals left

 $S \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots$

Example Derivation

$$\mathbf{S} ::= \boldsymbol{\epsilon} \mid \boldsymbol{a} \cdot \mathbf{S} \cdot \boldsymbol{a} \mid \boldsymbol{b} \cdot \mathbf{S} \cdot \boldsymbol{b}$$

$$egin{array}{rcl} {\sf S} &
ightarrow & a {\sf S} a \
ightarrow & a b {\sf S} b a \
ightarrow & a b a {\sf S} a b a \
ightarrow & a b a {\sf S} a b a \
ightarrow & a b a a b a a b a \end{array}$$

Example Derivation

9

$$E :::= 0 | 1 | 2 | ... |$$
$$| E \cdot + \cdot E$$
$$| E \cdot - \cdot E$$
$$| E \cdot * \cdot E$$
$$| (\cdot E \cdot)$$

 $E \rightarrow E * E$ $\rightarrow E + E * E$ $\rightarrow E + E * E + E$ $\rightarrow^{+} 1 + 2 * 3 + 4$

Example Derivation

$$E :::= 0 | 1 | 2 | ... | 9$$
$$| E \cdot + \cdot E$$
$$| E \cdot - \cdot E$$
$$| E \cdot * \cdot E$$
$$| (\cdot E \cdot)$$
$$\rightarrow E * E \qquad E \rightarrow E + E$$
$$\rightarrow E + E \qquad E \rightarrow E + E$$

 $\begin{array}{cccc} E \rightarrow & E \ast E & E \rightarrow & E + E \\ \rightarrow & E + E \ast E & \rightarrow & E + E + E \\ \rightarrow & E + E \ast E + E & \rightarrow & E + E \ast E + E \\ \rightarrow^+ & 1 + 2 \ast & 3 + 4 & \rightarrow^+ & 1 + 2 \ast & 3 + 4 \end{array}$

Language of a CFG

Let G be a context-free grammar with start symbol S. Then the language L(G) is:

$$\{c_1\ldots c_n\mid \forall i.\ c_i\in T\wedge S\rightarrow^* c_1\ldots c_n\}$$

Language of a CFG

Let G be a context-free grammar with start symbol S. Then the language L(G) is:

 $\{c_1\ldots c_n\mid \forall i.\ c_i\in T\wedge S\to^* c_1\ldots c_n\}$

- Terminals, because there are no rules for replacing them.
- Once generated, terminals are "permanent".
- Terminals ought to be tokens of the language (but can also be strings).

Parse Trees

Arithmetic Expressions

E ::= 0..9 $| E \cdot + \cdot E$ $| E \cdot - \cdot E$ $| E \cdot * \cdot E$ $| (\cdot E \cdot)$

Arithmetic Expressions

E ::= 0..9 $| E \cdot + \cdot E$ $| E \cdot - \cdot E$ $| E \cdot * \cdot E$ $| (\cdot E \cdot)$

A CFG is **left-recursive** if it has a nonterminal **E** such that $\mathbf{E} \rightarrow^+ \mathbf{E} \cdot \ldots$

Ambiguous Grammars

A grammar is **ambiguous** if there is a string that has at least two different parse trees.

E ::= 0...9 $| E \cdot + \cdot E$ $| E \cdot - \cdot E$ $| E \cdot * \cdot E$ $| (\cdot E \cdot)$

1 + 2 * 3 + 4

'Dangling' Else

Another ambiguous grammar:

$$\begin{array}{rcl} E & \to & \text{if } E \text{ then } E \\ & | & \text{if } E \text{ then } E \text{ else } E \\ & | & \dots \end{array}$$

if a then if x then y else c

CYK Algorithm

Suppose the grammar:

- $S ::= N \cdot P$
- P ::= $V \cdot N$
- $N ::= N \cdot N$
- N ::= students | Jeff | geometry | trains
- V ::= trains

Jeff trains geometry students

CYK Algorithm

- S ::= $N \cdot P$
- P ::= $V \cdot N$
- $N ::= N \cdot N$
- N ::= students | Jeff

geometry trains

V ::= trains

Chomsky Normal Form

A grammar for palindromes over the alphabet $\{a, b\}$:

 $\mathbf{S} ::= \mathbf{a} \cdot \mathbf{S} \cdot \mathbf{a} \mid \mathbf{b} \cdot \mathbf{S} \cdot \mathbf{b} \mid \mathbf{a} \cdot \mathbf{a} \mid \mathbf{b} \cdot \mathbf{b} \mid \mathbf{a} \mid \mathbf{b}$

CYK Algorithm

- fastest possible algorithm for recognition problem
 runtime is O(n³)
- grammars need to be transformed into CNF

"The C++ grammar is ambiguous, contextdependent and potentially requires infinite lookahead to resolve some ambiguities."

from the PhD thesis by Willink (2001)

int(x), y, *const z; int(x), y, new int;

Context Sensitive Grammars

It is much harder to find out whether a string is parsed by a context sensitive grammar:

 $S ::= bSAA \mid \epsilon$ A ::= abA ::= Ab

Context Sensitive Grammars

It is much harder to find out whether a string is parsed by a context sensitive grammar:

S ::= $bSAA | \epsilon$ A ::= abA ::= AbS $\rightarrow \ldots \rightarrow$? ababaa For CW2, please include '\' as a symbol in strings, because the collatz program contains write "\n";

val (r1s, f1s) = simp(r1)
val (r2s, f2s) = simp(r2)
how are the first rectification functions f1s and
f2s made? could you maybe show an example?