
A Crash‑Course on Notation
There are innumerable books available about compilers, automata theory and
formal languages. Unfortunately, they often use their own notational conven‑
tions and their own symbols. This handout is meant to clarify some of the nota‑
tion I will use. I apologise in advance that sometimes I will be a bit fuzzy…the
problem is that often we want to have convenience in our mathematical defi‑
nitions (to make them readable and understandable), but other times we need
pedantic precision for actual programs.

Characters and Strings

The most basic concept in this module are strings. Strings are composed of
characters. While characters are surely a familiar concept, we will make one
subtle distinction in this module. If we want to refer to concrete characters, like
a, b, c and so on, we will use a typewriter font. Accordingly if we want to refer
to the concrete characters of my email address we shall write

christian.urban@kcl.ac.uk

If we also need to explicitly indicate the “space” character, we write . For
example

hello world

But often we do not care which particular characters we use. In such cases we
use the italic font andwrite a, b, c and so on for characters. Therefore if we need
a representative string, we might write

abracadabra

In this string, we do not really care what the characters stand for, except we
do care about the fact that for example the character a is not equal to b and so
on. Why do I make this distinction? Because we often need to define functions
using variables ranging over characters. We need to somehow say “this‑is‑a‑
variable” and give it a name. In such cases we use the italic font.

An alphabet is a (non‑empty) finite set of characters. Often the letter Σ is
used to refer to an alphabet. For example the ASCII characters a to z form an
alphabet. The digits 0 to 9 are another alphabet. The Greek letters α to ω also
form an alphabet. If nothing else is specified, we usually assume the alphabet
consists of just the lower‑case letters a, b, …, z. Sometimes, however, we explic‑
itly want to restrict strings to contain only the letters a and b, for example. In
this case we will state that the alphabet is the set {a, b}.

Strings are lists of characters. Unfortunately, there are many ways how we
can write down strings. In programming languages, they are usually written
as "hello"where the double quotes indicate that we are dealing with a string.
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In typed programming languages, such as Scala, strings have a special type—
namely String which is different from the type for lists of characters. This
is because strings can be efficiently represented in memory, unlike lists. Since
String and the type of lists of characters (namely List[Char]) are not the same,
we need to explicitly coerce elements between the two types, for example

scala> "abc".toList
res01: List[Char] = List(a, b, c)

However, we do not want to do this kind of explicit coercion in our pencil‑and‑
paper, everyday arguments. So in our (mathematical) definitions we regard
strings as lists of characters and we will also write "hello" as list

[h, e, l, l, o] or simply hello

The important point is that we can always decompose such strings. For exam‑
ple, we will often consider the first character of a string, say h, and the “rest” of
a string say "ello" when making definitions about strings. There are also some
subtleties with the empty string, sometimes written as "" but also as the empty
list of characters [ ].1

Two strings, say s1 and s2, can be concatenated, which we write as s1@s2.
If we regard s1 and s2 as lists of characters, then @ is the list‑append function.
Suppose we are given two strings "foo" and "bar", then their concatenation,
written "foo" @ "bar", gives "foobar". But as said above, we will often simplify
our life and just drop the double quoteswhenever it is clearwe are talking about
strings. So we will just write foo, bar, foobar foo @ bar and so on.

Occasionally we will use the notation an for strings, which stands for the
string of n repeated as. So anbn is a string that has some number of as followed
by the same number of bs. Confusingly, in Scala the notation is “times” for this
opration. So you can write

scala> "a" * 13
val res02: String = aaaaaaaaaaaaa

A simple property of string concatenation is associativity, meaning

(s1@s2)@s3 = s1@(s2@s3)

are always equal strings. The empty string behaves like a unit element, therefore

s @ [] = []@ s = s

Sets and Languages

We will use the familiar operations ∪, ∩, ⊂ and ⊆ for sets. For the empty set
we will either write ∅ or { }. The set containing the natural numbers 1, 2 and
3, for example, we will write with curly braces as

1In the literature you can also often find that ε or λ is used to represent the empty string. But
we are not going to use this notation.
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{1, 2, 3}

The notation ∈ means element of, so 1 ∈ {1, 2, 3} is true and 4 ∈ {1, 2, 3} is
false. Note that the list [1, 2, 3] is something different from the set {1, 2, 3}: in
the former we care about the order and potentially several occurrences of a
number; while with the latter we do not. Also sets can potentially have in‑
finitely many elements, whereas lists cannot. For example the set of all natural
numbers {0, 1, 2, . . .} is infinite. This set is often also abbreviated as N. Lists
can be very large, but they cannot contain infinitely many elements.

We can define sets by giving all their elements, for example {0, 1} for the set
containing just 0 and 1. But often we need to use set comprehensions to define
sets. For example the set of all even natural numbers can be defined as

{n | n ∈ N ∧ n is even}

Set comprehensions consist of a “base set” (in this case all the natural numbers)
and a predicate (here eveness).

Though silly, but the set {0, 1, 2} could also be defined by the following set
comprehension

{n | n ∈ N ∧ n2 < 9}

Can you see why this defines the set {0, 1, 2}? Notice that set comprehensions
are quite powerful constructions. For example they could be used to define set
union, set intersection and set difference:

A ∪ B def
= {x | x ∈ A ∨ x ∈ B}

A ∩ B def
= {x | x ∈ A ∧ x ∈ B}

A\B def
= {x | x ∈ A ∧ x ̸∈ B}

In general set comprehensions are of the form {a | P} which stands for the set
of all elements a (from some set) for which some property P holds. If program‑
ming is more your‑kind‑of‑thing, you might recognise the similarities with for‑
comprehensions, for example for the silly set above you could write

scala> for (n <- (0 to 10).toSet; if n * n < 9) yield n
val res03: Set[Int] = Set(0, 1, 2)

This is pretty much the same as {n | n ∈ N ∧ n2 < 9} just in Scala syntax.
For defining sets, we will also often use the notion of the “big union”. An

example is as follows: ∪
0≤n

{n2, n2 + 1} (1)

which is the set of all squares and their immediate successors, so
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{0, 1, 2, 4, 5, 9, 10, 16, 17, . . .}
A big union is a sequence of unions which are indexed typically by a natural
number. So the big union in (1) could equally be written as

{0, 1} ∪ {1, 2} ∪ {4, 5} ∪ {9, 10} ∪ . . .

but using the big union notation is more concise.

As an aside: While this stuff about sets might all look trivial or even need‑
lessly pedantic, Nature is never simple. If you want to be amazed how com‑
plicated sets can get, watch out for the last lecture just before Christmas where
I want to convince you of the fact that some sets are more infinite than other
sets. Yes, you read correctly, there can be sets that are “more infinite” than
others. If you think this is obvious: say you have the infinite set N\{0} =
{1, 2, 3, 4, . . .} which is all the natural numbers except 0, and then compare it
to the set {0, 1, 2, 3, 4, . . .} which contains the 0 and all other numbers. If you
think, the second must be more infinite… well, then think again. Because the
two infinite sets

{1, 2, 3, 4, . . .} and {0, 1, 2, 3, 4, . . .}

contain actually the same amount of elements. Does this make sense to you? If
yes, good. If not, then something to learn about.

Though this might all look strange, infinite sets will be a topic that is very
relevant to the material of this module. It tells us what we can compute with
a computer (actually an algorithm) and what we cannot. But during the first 9
lectures we can go by without this “weird” stuff. End of aside.

Another important notion in this module are languages, which are sets of
strings. One of themain goals for uswill be how to (formally) specify languages
and to find out whether a string is in a language or not.2 Note that the language
containing the empty string {""} is not equal to ∅, the empty language (or
empty set): The former contains one element, namely "" (also written [ ]), but
the latter does not contain any element at all! Make sure you see the difference.

For languages we define the operation of language concatenation, written
like in the string case as A@B:

A@B def
= {s1@s2 | s1 ∈ A ∧ s2 ∈ B} (2)

Be careful to understand the difference: the @ in s1@s2 is string concatenation,
while A@B refers to the concatenation of two languages (or sets of strings).
As an example suppose A = {ab, ac} and B = {zzz, qq, r}, then A @ B is the
language

{abzzz, abqq, abr, aczzz, acqq, acr}
2You might wish to ponder whether this is in general a hard or easy problem, where hardness

is meant in terms of Turing decidable, for example.
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The cool thing about Scala is that we can define language concatenation very
elegantly as

def concat(A: Set[String], B: Set[String]) =
for (x <- A ; y <- B) yield x ++ y

where ++ is string concatenation in Scala.
Recall the properties for string concatenation. For language concatenation

we have the following properties

associativity: (A@B)@C = A@(B@C)
unit element: A @ {[]} = {[]}@ A = A
zero element: A @∅ = ∅@ A = ∅

Note the difference in the last two lines: the empty set behaves like 0 for multi‑
plication, whereas the set {[]} behaves like 1 for multiplication (n ∗ 1 = n and
n ∗ 0 = 0). Again this is a subtletly you need to get compfortable with.

Using the operation of language concatenation, we can define a language
power operation as follows:

A0 def
= {[]}

An+1 def
= A @ An

This definition is by recursion on natural numbers. Note carefully that the zero‑
case is not defined as the empty set, but the set containing the empty string. So
no matter what the set A is, A0 will always be {[]}. (There is another hint about
a connection between the @‑operation and multiplication: How is xn defined
in mathematics and what is x0?)

Next we can define the star operation for languages: A⋆ is the union of all
powers of A, or short

A⋆
def
=

∪
0≤n

An (3)

This star operation is often also called Kleene‑star after the mathematician/com‑
puter scientist Stephen Cole Kleene. Unfolding the definition in (3) gives

A⋆
def
= A0 ∪ A1 ∪ A2 ∪ A3 ∪ . . .

which is equal to

A⋆
def
= {[]} ∪ A ∪ A@A ∪ A@A@A ∪ . . .

We can see that the empty string is always in A⋆, no matter what A is. This is
because [] ∈ A0. To make sure you understand these definitions, I leave you to
answer what {[]}⋆ and ∅⋆ are?

Recall that an alphabet is often referred to by the letter Σ. We can nowwrite
for the set of all strings over this alphabet as Σ⋆. In doing so we also include
the empty string as a possible string (over Σ). Assuming Σ = {a, b}, then Σ⋆ is
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{[], a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, . . .}

or in words all strings containing as and bs only, plus the empty string.

Thanks for making it until here! There are also some personal conventions
about regular expressions. But I will explain them in the handout for the first
week. An exercise you can do: Implement the power operation for languages
and try out some examples.
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