
Automata and
Formal Languages (7)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

AFL 07, King’s College London, 13. November 2013 – p. 1/17

Two Weeks Ago: CFGs

A context-free grammar (CFG) G consists of:
a finite set of nonterminal symbols (upper case)
a finite terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A → rhs1|rhs2| . . .
where rhs are sequences involving terminals and
nonterminals (can also be empty).

AFL 07, King’s College London, 13. November 2013 – p. 2/17

Two Weeks Ago: CFGs

A context-free grammar (CFG) G consists of:
a finite set of nonterminal symbols (upper case)
a finite terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A → rhs1|rhs2| . . .
where rhs are sequences involving terminals and
nonterminals (can also be empty).

AFL 07, King’s College London, 13. November 2013 – p. 2/17

Hierarchy of Languages

Recall that languages are sets of strings.

...
all languages

..
decidable languages

.

.context sensitive languages

.

.

context-free languages
.

.

regular languages

AFL 07, King’s College London, 13. November 2013 – p. 3/17

Arithmetic Expressions

A grammar for arithmetic expressions and
numbers:

E → E · + · E | E · ∗ · E | (·E·) | N
N → N · N | 0 | 1 | . . . | 9

Unfortunately it is left-recursive (and ambiguous).
A problem for recursive descent parsers
(e.g. parser combinators).

AFL 07, King’s College London, 13. November 2013 – p. 4/17

Arithmetic Expressions

A grammar for arithmetic expressions and
numbers:

E → E · + · E | E · ∗ · E | (·E·) | N
N → N · N | 0 | 1 | . . . | 9

Unfortunately it is left-recursive (and ambiguous).
A problem for recursive descent parsers
(e.g. parser combinators).

AFL 07, King’s College London, 13. November 2013 – p. 4/17

Numbers

N → N · N | 0 | 1 | . . . | 9

A non-left-recursive, non-ambiguous grammar for
numbers:

N → 0 · N | 1 · N | . . . | 0 | 1 | . . . | 9

AFL 07, King’s College London, 13. November 2013 – p. 5/17

Operator Precedences
To disambiguate

E → E · + · E | E · ∗ · E | (·E·) | N

Decide on how many precedence levels, say
highest for (), medium for *, lowest for +

Elow → Emed · + · Elow | Emed

Emed → Ehi · ∗ · Emed | Ehi

Ehi → (·Elow·) | N

What happens with 1 + 3 + 4?

AFL 07, King’s College London, 13. November 2013 – p. 6/17

Operator Precedences
To disambiguate

E → E · + · E | E · ∗ · E | (·E·) | N

Decide on how many precedence levels, say
highest for (), medium for *, lowest for +

Elow → Emed · + · Elow | Emed

Emed → Ehi · ∗ · Emed | Ehi

Ehi → (·Elow·) | N

What happens with 1 + 3 + 4?

AFL 07, King’s College London, 13. November 2013 – p. 6/17

Removing Left-Recursion
The rule for numbers is directly left-recursive:

N → N · N | 0 | 1 (. . .)

Translate

N → N · α
| β ⇒

N → β · N ′

N ′ → α · N ′

| ϵ

Which means

N → 0 · N ′ | 1 · N ′

N ′ → N · N ′ | ϵ

AFL 07, King’s College London, 13. November 2013 – p. 7/17

Removing Left-Recursion
The rule for numbers is directly left-recursive:

N → N · N | 0 | 1 (. . .)

Translate

N → N · α
| β ⇒

N → β · N ′

N ′ → α · N ′

| ϵ

Which means

N → 0 · N ′ | 1 · N ′

N ′ → N · N ′ | ϵ

AFL 07, King’s College London, 13. November 2013 – p. 7/17

Chomsky Normal Form

All rules must be of the form

A → a

or

A → B · C

No rule can contain ϵ.

AFL 07, King’s College London, 13. November 2013 – p. 8/17

ϵ-Removal
...1 If A → α ·B ·β and B → ϵ are in the grammar,

then add A → α · β (iterate if necessary).
...2 Throw out all B → ϵ.

N → 0 · N ′ | 1 · N ′

N ′ →N · N ′ | ϵ
N → 0 · N ′ | 1 · N ′ | 0 | 1
N ′ →N · N ′ | N | ϵ

N → 0 · N ′ | 1 · N ′ | 0 | 1
N ′ →N · N ′ | N

N → 0 · N | 1 · N | 0 | 1

AFL 07, King’s College London, 13. November 2013 – p. 9/17

ϵ-Removal
...1 If A → α ·B ·β and B → ϵ are in the grammar,

then add A → α · β (iterate if necessary).
...2 Throw out all B → ϵ.

N → 0 · N ′ | 1 · N ′

N ′ →N · N ′ | ϵ
N → 0 · N ′ | 1 · N ′ | 0 | 1
N ′ →N · N ′ | N | ϵ

N → 0 · N ′ | 1 · N ′ | 0 | 1
N ′ →N · N ′ | N

N → 0 · N | 1 · N | 0 | 1

AFL 07, King’s College London, 13. November 2013 – p. 9/17

CYK Algorithm

If grammar is in Chomsky normalform …

S → N · P
P → V · N
N → N · N
N → students | Jeff | geometry | trains
V → trains

Jeff trains geometry students

AFL 07, King’s College London, 13. November 2013 – p. 10/17

CYK Algorithm

fastest possible algorithm for recognition
problem
runtime is O(n3)

grammars need to be transferred into CNF

AFL 07, King’s College London, 13. November 2013 – p. 11/17

Hierarchy of Languages

Recall that languages are sets of strings.

...
all languages

..
decidable languages

.

.context sensitive languages

.

.

context-free languages
.

.

regular languages

AFL 07, King’s College London, 13. November 2013 – p. 12/17

Context Sensitive Grms

S ⇒ bSAA | ϵ
A ⇒ a
bA ⇒ Ab

S ⇒ . . . ⇒? ”ababaa”

AFL 07, King’s College London, 13. November 2013 – p. 13/17

Context Sensitive Grms

S ⇒ bSAA | ϵ
A ⇒ a
bA ⇒ Ab

S ⇒ . . . ⇒? ”ababaa”

AFL 07, King’s College London, 13. November 2013 – p. 13/17

Parse Trees
Stmt → skip

| Id := AExp
| if BExp then Block else Block
| while BExp do Block
| read Id
| write Id
| write String

Stmts → Stmt ; Stmts
| Stmt

Block → { Stmts }
| Stmt

AExp → …
BExp → …

AFL 07, King’s College London, 13. November 2013 – p. 14/17

Parse Trees
E → F | F · ∗ · F
F → T | T · + · T | T · − · T
T → num_token | (·E·)

..E.

F

.

T

.

(E)

.

F * F

.

T

.

2

.

T

.

3

.

+

.

T

.

(E)

.

F

.

T + T

.

3

.

4
AFL 07, King’s College London, 13. November 2013 – p. 15/17

(2*3)+(3+4)

Ambiguous Grammars

A CFG is ambiguous if there is a string that has at
least parse trees.

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

1 + 2 * 3 + 4

AFL 07, King’s College London, 13. November 2013 – p. 16/17

Dangling Else

Another ambiguous grammar:

E → if E then E
| if E then E else E
| id

if a then if x then y else c

AFL 07, King’s College London, 13. November 2013 – p. 17/17

A CFG Derivation

...1 Begin with a string with only the start symbol S

...2 Replace any non-terminal X in the string by the
right-hand side of some production X → rhs

...3 Repeat 2 until there are no non-terminals

S → . . . → . . . → . . . → . . .

AFL 07, King’s College London, 13. November 2013 – p. 18/17

