
Automata and
Formal Languages (7)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

AFL 07, King’s College London – p. 1/1

CFGs

A context-free grammar (CFG) G consists of:
a finite set of nonterminal symbols (upper case)
a finite terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A → rhs1|rhs2| . . .
where rhs are sequences involving terminals and
nonterminals (can also be empty).

AFL 07, King’s College London – p. 2/1

CFGs

A context-free grammar (CFG) G consists of:
a finite set of nonterminal symbols (upper case)
a finite terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A → rhs1|rhs2| . . .
where rhs are sequences involving terminals and
nonterminals (can also be empty).

AFL 07, King’s College London – p. 2/1

Hierarchy of Languages

Recall that languages are sets of strings.

all languages

decidable languages

context sensitive languages
context-free languages

regular languages

AFL 07, King’s College London – p. 3/1

Arithmetic Expressions

A grammar for arithmetic expressions and
numbers:

E → E ·+ · E | E · ∗ · E | (·E·) | N
N → N ·N | 0 | 1 | . . . | 9

Unfortunately it is left-recursive (and ambiguous).
A problem for recursive descent parsers
(e.g. parser combinators).

AFL 07, King’s College London – p. 4/1

Arithmetic Expressions

A grammar for arithmetic expressions and
numbers:

E → E ·+ · E | E · ∗ · E | (·E·) | N
N → N ·N | 0 | 1 | . . . | 9

Unfortunately it is left-recursive (and ambiguous).
A problem for recursive descent parsers
(e.g. parser combinators).

AFL 07, King’s College London – p. 4/1

Numbers

N → N ·N | 0 | 1 | . . . | 9

A non-left-recursive, non-ambiguous grammar for
numbers:

N → 0 ·N | 1 ·N | . . . | 0 | 1 | . . . | 9

AFL 07, King’s College London – p. 5/1

Operator Precedences
To disambiguate

E → E ·+ · E | E · ∗ · E | (·E·) | N

Decide on how many precedence levels, say
highest for (), medium for *, lowest for +

Elow → Emed ·+ · Elow | Emed
Emed → Ehi · ∗ · Emed | Ehi
Ehi → (·Elow·) | N

What happens with 1 + 3 + 4?

AFL 07, King’s College London – p. 6/1

Operator Precedences
To disambiguate

E → E ·+ · E | E · ∗ · E | (·E·) | N

Decide on how many precedence levels, say
highest for (), medium for *, lowest for +

Elow → Emed ·+ · Elow | Emed
Emed → Ehi · ∗ · Emed | Ehi
Ehi → (·Elow·) | N

What happens with 1 + 3 + 4?
AFL 07, King’s College London – p. 6/1

Removing Left-Recursion
The rule for numbers is directly left-recursive:

N → N ·N | 0 | 1 (. . .)

Translate

N → N · α
| β ⇒

N → β ·N′

N′ → α ·N′

| ϵ

Which means

N → 0 ·N′ | 1 ·N′

N′ → N ·N′ | ϵ

AFL 07, King’s College London – p. 7/1

Removing Left-Recursion
The rule for numbers is directly left-recursive:

N → N ·N | 0 | 1 (. . .)

Translate

N → N · α
| β ⇒

N → β ·N′

N′ → α ·N′

| ϵ

Which means

N → 0 ·N′ | 1 ·N′

N′ → N ·N′ | ϵ

AFL 07, King’s College London – p. 7/1

Chomsky Normal Form

All rules must be of the form

A → a

or

A → B · C

No rule can contain ϵ.

AFL 07, King’s College London – p. 8/1

ϵ-Removal
1 If A → α · B · β and B → ϵ are in the grammar,

then add A → α · β (iterate if necessary).
2 Throw out all B → ϵ.

N → 0 ·N′ | 1 ·N′

N′ → N ·N′ | ϵ N → 0 ·N′ | 1 ·N′ | 0 | 1
N′ → N ·N′ | N | ϵ

N → 0 ·N′ | 1 ·N′ | 0 | 1
N′ → N ·N′ | N

N→ 0 ·N | 1 ·N | 0 | 1

AFL 07, King’s College London – p. 9/1

ϵ-Removal
1 If A → α · B · β and B → ϵ are in the grammar,

then add A → α · β (iterate if necessary).
2 Throw out all B → ϵ.

N → 0 ·N′ | 1 ·N′

N′ → N ·N′ | ϵ N → 0 ·N′ | 1 ·N′ | 0 | 1
N′ → N ·N′ | N | ϵ

N → 0 ·N′ | 1 ·N′ | 0 | 1
N′ → N ·N′ | N

N→ 0 ·N | 1 ·N | 0 | 1

AFL 07, King’s College London – p. 9/1

CYK Algorithm

If grammar is in Chomsky normalform …

S → N · P
P → V ·N
N → N ·N
N → students | Jeff | geometry | trains
V → trains

Jeff trains geometry students

AFL 07, King’s College London – p. 10/1

CYK Algorithm

fastest possible algorithm for recognition
problem
runtime is O(n3)

grammars need to be transferred into CNF

AFL 07, King’s College London – p. 11/1

Hierarchy of Languages

Recall that languages are sets of strings.

all languages

decidable languages

context sensitive languages
context-free languages

regular languages

AFL 07, King’s College London – p. 12/1

Context Sensitive Grms

S ⇒ bSAA | ϵ
A ⇒ a
bA ⇒ Ab

S ⇒ . . . ⇒? ”ababaa”

AFL 07, King’s College London – p. 13/1

Context Sensitive Grms

S ⇒ bSAA | ϵ
A ⇒ a
bA ⇒ Ab

S ⇒ . . . ⇒? ”ababaa”

AFL 07, King’s College London – p. 13/1

Stmt → skip
| Id := AExp
| if BExp then Block else Block
| while BExp do Block
| read Id
| write Id
| write String

Stmts → Stmt ; Stmts
| Stmt

Block → { Stmts }
| Stmt

AExp → …
BExp → …

AFL 07, King’s College London – p. 14/1

1 write ”Fib”;
2 read n;
3 minus1 := 0;
4 minus2 := 1;
5 while n > 0 do {
6 temp := minus2;
7 minus2 := minus1 + minus2;
8 minus1 := temp;
9 n := n - 1

10 };
11 write ”Result”;
12 write minus2

AFL 07, King’s College London – p. 15/1

An Interpreter

{
x := 5;
y := x ∗ 3;
y := x ∗ 4;
x := u ∗ 3

}

the interpreter has to record the value of x before
assigning a value to y

eval(stmt, env)

AFL 07, King’s College London – p. 16/1

An Interpreter

{
x := 5;
y := x ∗ 3;
y := x ∗ 4;
x := u ∗ 3

}

the interpreter has to record the value of x before
assigning a value to y
eval(stmt, env)

AFL 07, King’s College London – p. 16/1

Interpreter

eval(n,E) def
= n

eval(x,E) def
= E(x) lookup x in E

eval(a1 + a2,E)
def
= eval(a1,E) + eval(a2,E)

eval(a1 − a2,E)
def
= eval(a1,E)− eval(a2,E)

eval(a1 ∗ a2,E)
def
= eval(a1,E) ∗ eval(a2,E)

eval(a1 = a2,E)
def
= eval(a1,E) = eval(a2,E)

eval(a1 != a2,E)
def
= ¬(eval(a1,E) = eval(a2,E))

eval(a1 < a2,E)
def
= eval(a1,E) < eval(a2,E)

AFL 07, King’s College London – p. 17/1

Interpreter (2)

eval(skip,E) def
= E

eval(x := a,E) def
= E(x 7→ eval(a,E))

eval(if b then cs1 else cs2,E)
def
=

if eval(b,E) then eval(cs1,E)
else eval(cs2,E)

eval(while b do cs,E) def
=

if eval(b,E)
then eval(while b do cs, eval(cs,E))
else E

eval(write x,E) def
= { println(E(x)) ; E }

AFL 07, King’s College London – p. 18/1

Test Program
1 start := 1000;
2 x := start;
3 y := start;
4 z := start;
5 while 0 < x do {
6 while 0 < y do {
7 while 0 < z do { z := z - 1 };
8 z := start;
9 y := y - 1

10 };
11 y := start;
12 x := x - 1
13 }

AFL 07, King’s College London – p. 19/1

Interpreted Code

200 400 600 800 1,000 1,200 1,400

100

200

300

n

se
cs

AFL 07, King’s College London – p. 20/1

Java Virtual Machine

introduced in 1995
is a stack-based VM (like Postscript, CLR of .Net)
contains a JIT compiler
many languages take advantage of JVM’s
infrastructure (JRE)
is garbage collected ⇒ no buffer overflows
some languages compile to the JVM: Scala,
Clojure…

AFL 07, King’s College London – p. 21/1

