Automata and Formal Languages (3)

Email: christian.urban at kcl.ac.uk

Office: S1.27 (1st floor Strand Building)

Slides: KEATS (also home work and course-

work is there)

Regular Expressions

In programming languages they are often used to recognise:

- symbols, digits
- identifiers
- numbers (non-leading zeros)
- keywords
- comments

http://www.regexper.com

Last Week

Last week I showed you a regular expression matcher which works provably correct in all cases (we did not do the proving part though)

matches r s if and only if $s \in L(r)$

by Janusz Brzozowski (1964)

The Derivative of a Rexp

$$der c (\varnothing) \stackrel{\text{def}}{=} \varnothing$$

$$der c (e) \stackrel{\text{def}}{=} \varnothing$$

$$der c (d) \stackrel{\text{def}}{=} if c = d \text{ then } e \text{ else } \varnothing$$

$$der c (r_1 + r_2) \stackrel{\text{def}}{=} der c r_1 + der c r_2$$

$$der c (r_1 \cdot r_2) \stackrel{\text{def}}{=} if nullable (r_1)$$

$$then (der c r_1) \cdot r_2 + der c r_2$$

$$else (der c r_1) \cdot r_2$$

$$der c (r^*) \stackrel{\text{def}}{=} (der c r) \cdot (r^*)$$

$$der s [] r \stackrel{\text{def}}{=} r$$

$$der s (c :: s) r \stackrel{\text{def}}{=} der s s (der c r)$$

To see what is going on, define

$$Der \, c A \stackrel{\text{def}}{=} \{ s \mid c :: s \in A \}$$

For
$$A = \{foo, bar, frak\}$$
 then
$$Der fA = \{oo, rak\}$$

$$Der bA = \{ar\}$$

$$Der aA = \emptyset$$

If we want to recognise the string abc with regular expression r then

• Der a(L(r))

If we want to recognise the string abc with regular expression r then

- Der a(L(r))
- \bigcirc Der b (Der a (L(r)))

If we want to recognise the string abc with regular expression r then

- Der a (L(r))
- \bigcirc Der b (Der a (L(r)))
- \bullet Der c (Der b (Der a (L(r))))

If we want to recognise the string abc with regular expression r then

- Der a (L(r))
- \bigcirc Der b (Der a (L(r)))
- \bullet Der c (Der b (Der a (L(r))))
- finally we test whether the empty string is in this set

If we want to recognise the string abc with regular expression r then

- Der a (L(r))
- \bigcirc Der b (Der a (L(r)))
- lacktriangledown Der c (Der b (Der a (L(r))))
- finally we test whether the empty string is in this set

The matching algorithm works similarly, just over regular expressions instead of sets.

Input: string *abc* and regular expression r

- 1 der ar
- o der b (der a r)
- der c (der b (der a r))

Input: string *abc* and regular expression r

- der a r
- der b (der a r)
- der c (der b (der a r))
- finally check whether the last regular expression can match the empty string

We proved already

$$nullable(r)$$
 if and only if $[] \in L(r)$

by induction on the regular expression.

We proved already

nullable(r) if and only if $[] \in L(r)$

by induction on the regular expression.

Any Questions?

We need to prove

$$L(\operatorname{der} c r) = \operatorname{Der} c \left(L(r) \right)$$

by induction on the regular expression.

Proofs about Rexps

- P holds for \emptyset , ϵ and c
- P holds for $r_1 + r_2$ under the assumption that P already holds for r_1 and r_2 .
- P holds for $r_1 \cdot r_2$ under the assumption that P already holds for r_1 and r_2 .
- P holds for r* under the assumption that P already holds for r.

Proofs about Natural Numbers and Strings

- P holds for o and
- P holds for n + 1 under the assumption that P already holds for n

- P holds for [] and
- P holds for c::s under the assumption that P already holds for s

Languages

A language is a set of strings.

A regular expression specifies a language.

A language is regular iff there exists a regular expression that recognises all its strings.

Languages

A language is a set of strings.

A regular expression specifies a language.

A language is regular iff there exists a regular expression that recognises all its strings.

not all languages are regular, e.g. a^nb^n is not

Regular Expressions

How about ranges [a-z], r^+ and $\sim r$? Do they increase the set of languages we can recognise?

Negation of Regular Expr's

- $\sim r$ (everything that r cannot recognise)
- $L(\sim r) \stackrel{\text{def}}{=} UNIV L(r)$
- $nullable(\sim r) \stackrel{\text{def}}{=} not (nullable(r))$
- $der c (\sim r) \stackrel{\text{def}}{=} \sim (der c r)$

Negation of Regular Expr's

- $\sim r$ (everything that r cannot recognise)
- $L(\sim r) \stackrel{\text{def}}{=} UNIV L(r)$
- $nullable(\sim r) \stackrel{\text{def}}{=} not (nullable(r))$
- $der c (\sim r) \stackrel{\text{def}}{=} \sim (der c r)$

Used often for recognising comments:

$$/\cdot *\cdot (\sim ([a-z]^*\cdot *\cdot /\cdot [a-z]^*))\cdot *\cdot /$$

Negation

Assume you have an alphabet consisting of the letters *a*, *b* and *c* only. Find a (basic!) regular expression that matches all strings *except ab* and *ac*!

Automata

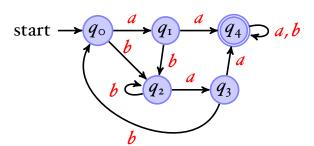
A deterministic finite automaton consists of:

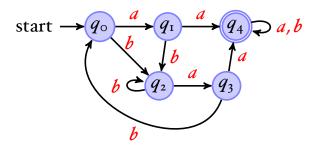
- a set of states
- one of these states is the start state
- some states are accepting states, and
- there is transition function

which takes a state as argument and a character and produces a new state

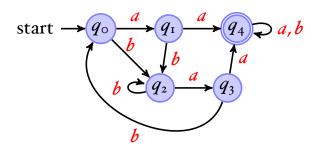
this function might not be everywhere defined

$$A(Q,q_{\circ},F,\delta)$$





- the start state can be an accepting state
- it is possible that there is no accepting state
- all states might be accepting (but this does not necessarily mean all strings are accepted)



for this automaton δ is the function

$$(q_0,a)
ightarrow q_1 \quad (q_1,a)
ightarrow q_4 \quad (q_4,a)
ightarrow q_4 \ (q_0,b)
ightarrow q_2 \quad (q_1,b)
ightarrow q_2 \quad (q_4,b)
ightarrow q_4 \ \cdots$$

Accepting a String

Given

$$A(Q,q_{\circ},F,\delta)$$

you can define

$$\hat{\delta}(q, []) \stackrel{\text{def}}{=} q$$

$$\hat{\delta}(q, c :: s) \stackrel{\text{def}}{=} \hat{\delta}(\delta(q, c), s)$$

Accepting a String

Given

$$A(Q,q_{\circ},F,\delta)$$

you can define

$$\hat{\delta}(q, []) \stackrel{\text{def}}{=} q$$

$$\hat{\delta}(q, c :: s) \stackrel{\text{def}}{=} \hat{\delta}(\delta(q, c), s)$$

Whether a string s is accepted by A?

$$\hat{\delta}(q_{\circ},s) \in F$$

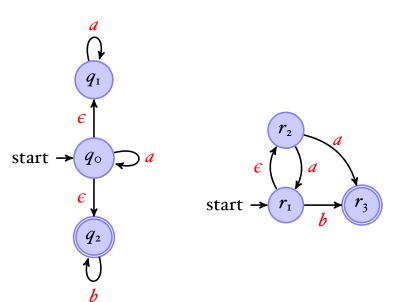
Non-Deterministic Finite Automata

A non-deterministic finite automaton consists again of:

- a finite set of states
- one of these states is the start state
- some states are accepting states, and
- there is transition relation

$$egin{array}{l} (q_{\scriptscriptstyle \rm I},a)
ightarrow q_{\scriptscriptstyle 2} \ (q_{\scriptscriptstyle \rm I},a)
ightarrow q_{\scriptscriptstyle 2} \end{array} \qquad (q_{\scriptscriptstyle \rm I},\epsilon)
ightarrow q_{\scriptscriptstyle 2}$$

Two NFA Examples

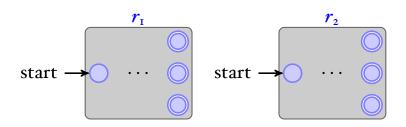


Rexp to NFA

```
\varnothing start \rightarrow start \rightarrow start \rightarrow
```

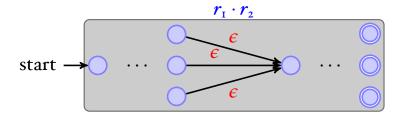
Case $r_1 \cdot r_2$

By recursion we are given two automata:



We need to (1) change the accepting nodes of the first automaton into non-accepting nodes, and (2) connect them via ϵ -transitions to the starting state of the second automaton.

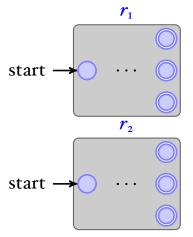
Case $r_1 \cdot r_2$



We need to (1) change the accepting nodes of the first automaton into non-accepting nodes, and (2) connect them via ϵ -transitions to the starting state of the second automaton.

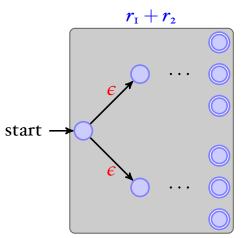
Case $r_1 + r_2$

By recursion we are given two automata:



We (1) need to introduce a new starting state and (2) connect it to the original two starting states.

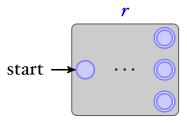
Case $r_1 + r_2$



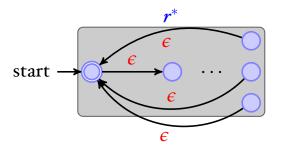
We (1) need to introduce a new starting state and (2) connect it to the original two starting states.

Case r^*

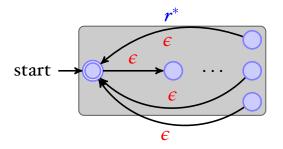
By recursion we are given an automaton for r:



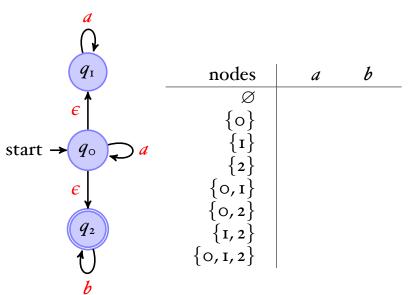
Case r^*

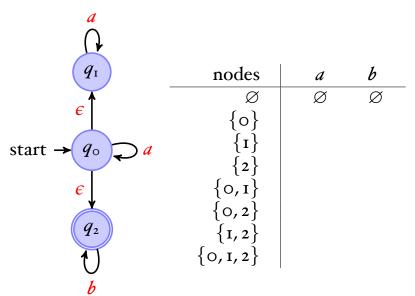


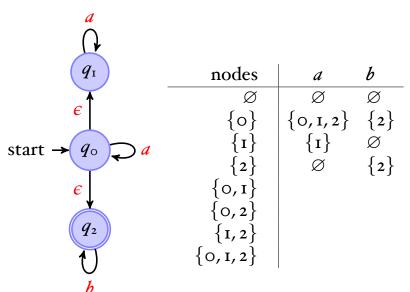
Case r^*

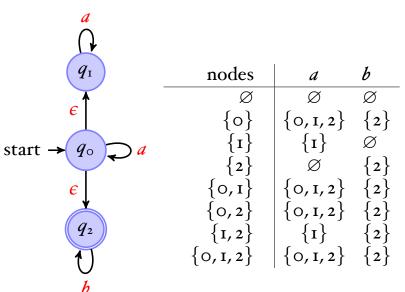


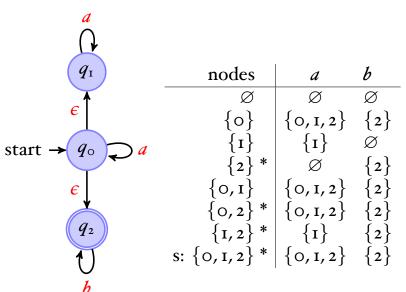
Why can't we just have an epsilon transition from the accepting states to the starting state?











Regexps and Automata

Thompson's subset construction construction

Regexps NFAs DFAs

Regexps and Automata

Thompson's subset construction construction

Regexps and Automata

Thompson's subset construction construction

Regular Languages

A language is regular iff there exists a regular expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic finite automaton that recognises all its strings.

Regular Languages

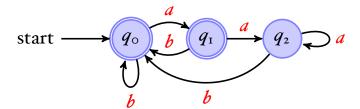
A language is regular iff there exists a regular expression that recognises all its strings.

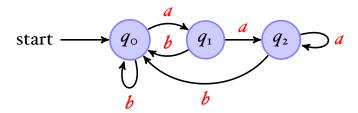
or equivalently

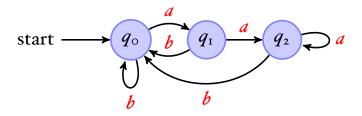
A language is regular iff there exists a deterministic finite automaton that recognises all its strings.

Why is every finite set of strings a regular language?

DFA to Rexp

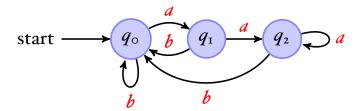






$$q_0 = 2 q_0 + 3 q_1 + 4 q_2$$

 $q_1 = 2 q_0 + 3 q_1 + 1 q_2$
 $q_2 = 1 q_0 + 5 q_1 + 2 q_2$

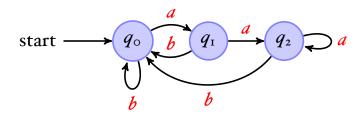




$$q_{\circ} = \epsilon + q_{\circ}b + q_{\scriptscriptstyle 1}b + q_{\scriptscriptstyle 2}b$$

$$q_{\scriptscriptstyle 1} = q_{\circ}a$$

$$q_{\scriptscriptstyle 2} = q_{\scriptscriptstyle 1}a + q_{\scriptscriptstyle 2}a$$



$$q_{\circ} = \epsilon + q_{\circ} b + q_{\scriptscriptstyle 1} b + q_{\scriptscriptstyle 2} b$$

$$q_{\scriptscriptstyle 1} = q_{\circ} a$$

$$q_{\scriptscriptstyle 2} = q_{\scriptscriptstyle 1} a + q_{\scriptscriptstyle 2} a$$

Arden's Lemma:

If
$$q = qr + s$$
 then $q = sr^*$

Given the function

$$egin{aligned} \mathit{rev}(arnothing) & \stackrel{ ext{def}}{=} arnothing \ \mathit{rev}(\epsilon) & \stackrel{ ext{def}}{=} \epsilon \ \mathit{rev}(c) & \stackrel{ ext{def}}{=} c \ \mathit{rev}(r_{\scriptscriptstyle \mathrm{I}} + r_{\scriptscriptstyle 2}) & \stackrel{ ext{def}}{=} \mathit{rev}(r_{\scriptscriptstyle \mathrm{I}}) + \mathit{rev}(r_{\scriptscriptstyle 2}) \ \mathit{rev}(r_{\scriptscriptstyle \mathrm{I}} \cdot r_{\scriptscriptstyle 2}) & \stackrel{ ext{def}}{=} \mathit{rev}(r_{\scriptscriptstyle 2}) \cdot \mathit{rev}(r_{\scriptscriptstyle \mathrm{I}}) \ \mathit{rev}(r^*) & \stackrel{ ext{def}}{=} \mathit{rev}(r)^* \end{aligned}$$

and the set

$$Rev A \stackrel{\text{def}}{=} \{s^{-1} \mid s \in A\}$$

prove whether

$$L(rev(r)) = Rev(L(r))$$