Coursework 2 (Strand 1)

This coursework is worth 5% and is due on 3 November at 16:00. You are asked
to implement the Sulzmann tokeniser for the WHILE language. You need to
submit a document containing the answers for the questions below. You can
do the implementation in any programming language you like, but you need
to submit the source code with which you answered the questions. However,
the coursework will only be judged according to the answers. You can submit
your answers in a txt-file or as pdf.

Disclaimer

It should be understood that the work you submit represents your own effort.
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures, which you can use. You can also use your own code from
the CW 1.

Question 1 (marked with 1%)

To implement a tokeniser for the WHILE language, you first need to design the
appropriate regular expressions for the following eight syntactic entities:

1. keywords are

while, if, then, else, do, for, to, true, false, read, write,
skip
2. operators are
45,5 % /,==1=5<,:=88 ||
3. strings are enclosed by ".."
4. parentheses are (, {,) and }
5. there are semicolons ;
6. whitespaces are either " " (one or more) or \n
7. identifiers are letters followed by underscores __, letters or digits
8

. numbers are 9, 1, ...

You can use the basic regular expressions

@,€,¢,11 + 19,11 12, 7"

but also the following extended regular expressions

[c1c2...cn] arange of characters

rt one or more times r
? .

7 optional r

it n-times r

Once you have designed all regular expressions for 1 - 8, then give the token
sequence for the Fibonacci program shown below in Fig. 1.

Question 2 (marked with 3%)

Implement the Sulzmann tokeniser from the lectures. For this you need to im-
plement the functions nullable and der (you can use your code from CW 1),
as well as mkeps and inj. These functions need to be appropriately extended
for the extended regular expressions from Q1. Also add the record regular ex-
pression from the lectures and implement a function, say env, that returns all
assignments from a value (such that you can extract easily the tokens from a
value).

The functions mkeps and inj return values. Calculate the value for your
regular expressions from Q1 and the string

"read n;"

and use your env function to give the token sequence.

Question 3 (marked with 1%)

Extend your tokenizer from Q2 to also simplify regular expressions after each
derivation step and rectify the computed values after each injection. Use this
tokenizer to tokenize the programs in Figure 1 and 2.

1 write "Fib";

> read n;

5 minusl := 0;

4+ minus2 := 1;

s while n > @ do {

6 temp := minus2;

7 minus2 := minusl + minus2;
8 minusl := temp;

9 n:=n -1

0o };

n write "Result";
2 write minus2

Figure 1: Fibonacci program in the WHILE language.

1 start := 1000;

2 X := start;
3y = start;
4+ z := start;

s while © < x do {
¢ while @ < y do {
7 while @ < z do { z := z - 1 };

8 z := start;
9 y =y -1
w o}

11 y := start;
12 X = x -1

13}

Figure 2: The three-nested-loops program in the WHILE language. Usually
used for timing measurements.

