
Handout 1

This course is about processing of strings. Lets start with what we mean by
string. Strings are lists of characters drawn from an alphabet. If nothing else is
specified, we usually assume the alphabet are letters a, b, . . . , z and A, B, . . .Z.
Sometimes we explicitly restrict strings to only contain the letters a and b. Then
we say the alphabet is the set {a, b}.

There are many ways how we write string. Since they are lists of characters
we might write them as "hello" being enclosed by double quotes. This is a short-
hand for the list

[h, e, l, l, o]

The important point is that we can always decompose strings. For example we
often consider the first character of a string, say h, and the “rest” of a string
"ello". There are also some subtleties with the empty string, sometimes written
as "" or as the empty list of characters [].

We often need to talk about sets of strings. For example the set of all strings

{"", "a", "b", "c",. . . ,"z", "aa", "ab", "ac", . . . , "aaa", . . . }

Any set of strings, not just the set of all strings, is often called a language. The
idea behind this choice is that if we enumerate, say, all words/strings from a
dictionary, like

{"the", "of", "milk", "name", "antidisestablishmentarianism", . . . }

then we have essentially described the English language, or more precisely all
strings that can be used in a sentence of the English language. French would
be a different set of string, and so on. In the context of this course, a language
might not necessarily make sense from a natural language perspective. For
example the set of all strings from above is a language, as is the empty set (of
strings). The empty set of strings is often written as ∅ or { }. Note that there is a
difference between the empty set, or empty language, and the set, or language,
that contains the empty string {""}: the former has no elements, the latter has
one element.

As seen there are languages which contain infinitely many strings, like the
set of all strings. The “natural” languages English, French and so on contain
many but only finitely many strings (the ones listed in a good dictionary). It
might be therefore surprising that the language consisting of all email addresses
is infinite if we assume it is defined by the regular expression1

([a-z0-9_.-]+)@([a-z0-9.-]+).([a-z.]{2,6})

The reason is that for example before the @-sign there can be any string you
want if it is made up from letters, digits, underscore, dot and hyphen—there

1See http://goo.gl/5LoVX7

1

http://goo.gl/5LoVX7

are infinitely many of those. Similarly the string after the @-sign can be any
string. This does not mean that every string is an email address. For example

foo@bar.c

is not, since the top-level-domains must be of length of at least two. Note that
there is the convention that uppercase letters are treated in email-addresses as
if they were lower-case.

Regular expressions are meant for conveniently describing languages...at least
languages we are interested in in Computer Science. For example there is no
convenient regular expression for describing the English language short of enu-
merating all English words/strings like in a dictionary. But they seem useful for
describing all permitted email addresses, as seen above.

Regular expressions are given by the following grammar:

r ::= ∅ null
| ϵ empty string / "" / []
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

There are some subtleties you should be aware of. First, we will use parentheses
to disambiguate regular expressions. For example we will write (r1+r2)

∗, which
is different from r1 + (r2)

∗. The former means roughly zero or more times r1
or r2, while the latter means r1 or zero or more times r2. We should also write
(r1 + r2) + r3 which is a regular expression different from r1 + (r2 + r3), but in
case of + and · we actually do not care and just write r1 + r2 + r3, or r1 · r2 · r3,
respectively. The reasons for this will become clear shortly. In the literature you
will often find that the choice r1 + r2 is written as r1 | r2

2

