
A Crash-Course on Scala
Scala is programming language that combines functional and object-oriented
programming-styles. This language received in the last five years quite a bit of
attention. One reason is that, like the Java programming language, it compiles
to the Java Virtual Machine (JVM) and therefore can run under MacOSX,
Linux and Windows.1 The main compiler can be downloaded from

http://www.scala-lang.org

Why do I use Scala in this course? Actually, you can do any part of the program-
ming coursework in any programming language you like. I use Scale because
its functional programming-style allows for some very small and elegant code.
Since the compiler is free, you can download it and run every example I give.
But if you prefer, you can also translate the examples into any other functional
language, for example Haskell, ML, F# and so on.

Writing programs in Scala can be done with Eclipse IDE and also with
IntelliJ, but I am using just the Emacs-editor and run programs on the command
line. One advantage of Scala is that it has an interpreter (a REPL — read-eval-
print-loop) with which you can run and test small code-snippets without the
need of the compiler. This helps a lot for interactively developing programs.
Once you installed Scala correctly, you can start the interpreter by typing

$ scala
Welcome to Scala version 2.11.2 (Java HotSpot(TM) 64-Bit Server VM).
Type in expressions to have them evaluated.
Type :help for more information.

scala>

At the scala prompt you can type things like 2 + 3 Ret . The output will be

scala> 2 + 3
res0: Int = 5

indicating that the result is of type Int and the result of the addition is 5.
Another example you can type in immediately is

scala> print ("hello world")
hello world

which prints out a string. Note that in this case there is no result: the reason
is that print does not produce any result indicated by res_, rather it is a
function that causes a side-effect of printing out a string. Once you are more
familiar with the functional programming-style, you will immediately see what
the difference is between a function that returns a result and a function that
causes a side-effect (the latter always has as return type Unit).

1There are also experimental backends for Android and JavaScript.

1

http://www.scala-lang.org

Inductive Datatypes
The elegance and conciseness of Scala programs stems often from the fact that
inductive datatypes can be easily defined. For example in “Mathematics” we
would define regular expressions by the grammar

r ::= ∅ null
| ϵ empty string
| c single character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

This grammar specifies what regular expressions are (essentially a kind of tree-
structure with three kinds of inner nodes and three leave nodes). If you are
familiar with Java, it might be an instructive exercise to define this kind of
inductive datatypes in Java.

Implementing the regular expressions from above in Scala requires an ab-
stract class, say, Rexp. The different kinds of regular expressions will be in-
stances of this abstract class. The cases for ∅ and ϵ do not require any argu-
ments, while in the other cases we do have arguments. For example the character
regular expressions need to take as argument the character they are supposed
to recognise.

. is a relative recen programming language This course is about the process-
ing of strings. Lets start with what we mean by strings. Strings (they are also
sometimes referred to as words) are lists of characters drawn from an alphabet.
If nothing else is specified, we usually assume the alphabet consists of just the
lower-case letters a, b, …, z. Sometimes, however, we explicitly restrict strings to
contain, for example, only the letters a and b. In this case we say the alphabet
is the set {a, b}.

There are many ways how we can write down strings. In programming
languages, they are usually written as ”hello” where the double quotes indicate
that we dealing with a string. Essentially, strings are lists of characters which
can be written for example as follows

[h, e, l, l, o]
The important point is that we can always decompose strings. For example,
we will often consider the first character of a string, say h, and the “rest”
of a string say ”ello” when making definitions about strings. There are some
subtleties with the empty string, sometimes written as ”” but also as the empty
list of characters []. Two strings, for example s1 and s2, can be concatenated,
which we write as s1@s2. Suppose we are given two strings ”foo” and ”bar”,
then their concatenation gives ”foobar”.

We often need to talk about sets of strings. For example the set of all strings
over the alphabet {a, . . . z} is

{””, ”a”, ”b”, ”c”,…,”z”, ”aa”, ”ab”, ”ac”, …, ”aaa”, …}

2

Any set of strings, not just the set-of-all-strings, is often called a language.
The idea behind this choice of terminology is that if we enumerate, say, all
words/strings from a dictionary, like

{”the”, ”of”, ”milk”, ”name”, ”antidisestablishmentarianism”, …}

then we have essentially described the English language, or more precisely all
strings that can be used in a sentence of the English language. French would
be a different set of strings, and so on. In the context of this course, a language
might not necessarily make sense from a natural language point of view. For
example the set of all strings shown above is a language, as is the empty set
(of strings). The empty set of strings is often written as ∅ or { }. Note that
there is a difference between the empty set, or empty language, and the set that
contains only the empty string {””}: the former has no elements, whereas the
latter has one element.

As seen, there are languages which contain infinitely many strings, like the
set of all strings. The “natural” languages like English, French and so on con-
tain many but only finitely many strings (namely the ones listed in a good
dictionary). It might be therefore be surprising that the language consisting of
all email addresses is infinite provided we assume it is defined by the regular
expression2

([a-z0-9_.-]+)@([a-z0-9.-]+).([a-z.]{2,6})

One reason is that before the @-sign there can be any string you want assuming
it is made up from letters, digits, underscores, dots and hyphens—clearly there
are infinitely many of those. Similarly the string after the @-sign can be any
string. However, this does not mean that every string is an email address. For
example

”foo@bar.c”

is not, because the top-level-domains must be of length of at least two. (Note
that there is the convention that uppercase letters are treated in email-addresses
as if they were lower-case.)

Before we expand on the topic of regular expressions, let us review some
operations on sets. We will use capital letters A, B, . . . to stand for sets of
strings. The union of two sets is written as usual as A ∪ B. We also need to
define the operation of concatenating two sets of strings. This can be defined
as

A@B def
= {s1@s2|s1 ∈ A ∧ s2 ∈ B}

which essentially means take the first string from the set A and concatenate it
with every string in the set B, then take the second string from A do the same

2See http://goo.gl/5LoVX7

3

http://goo.gl/5LoVX7

and so on. You might like to think about what this definition means in case A
or B is the empty set.

We also need to define the power of a set of strings, written as An with n
being a natural number. This is defined inductively as follows

A0 def
= {[]}

An+1 def
= A@An

Finally we need the star of a set of strings, written A∗. This is defined as the
union of every power of An with n ≥ 0. The mathematical notation for this
operation is

A∗ def
=

∪
0≤n

An

This definition implies that the star of a set A contains always the empty string
(that is A0), one copy of every string in A (that is A1), two copies in A (that
is A2) and so on. In case A = {”a”} we therefore have

A∗ = {””, ”a”, ”aa”, ”aaa”, . . .}

Be aware that these operations sometimes have quite non-intuitive properties,
for example

A ∪∅ = A
A ∪ A = A
A ∪ B = B ∪ A

A@B ̸= B@A
A@∅ = ∅@A = ∅

A@{””} = {””}@A = A

∅∗ = {””}
{””}∗ = {””}

A⋆ = {””} ∪ A · A∗

Regular expressions are meant to conveniently describe languages...at least lan-
guages we are interested in in Computer Science. For example there is no
convenient regular expression for describing the English language short of enu-
merating all English words. But they seem useful for describing all permitted
email addresses, as seen above.

Regular expressions are given by the following grammar:

r ::= ∅ null
| ϵ empty string / ”” / []
| c single character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

Because we overload our notation, there are some subtleties you should be aware
of. First, the letter c stands for any character from the alphabet at hand. Sec-
ond, we will use parentheses to disambiguate regular expressions. For example
we will write (r1 + r2)

∗, which is different from, say r1 + (r2)
∗. The former

means roughly zero or more times r1 or r2, while the latter means r1 or zero

4

or more times r2. We should also write (r1 + r2) + r3, which is different from
the regular expression r1 + (r2 + r3), but in case of + and · we actually do not
care about the order and just write r1 + r2 + r3, or r1 · r2 · r3, respectively. The
reasons for this will become clear shortly. In the literature you will often find
that the choice r1 + r2 is written as r1 | r2 or r1 || r2. Also following the con-
vention in the literature, we will in case of · even often omit it all together. For
example the regular expression for email addresses shown above is meant to be
of the form

([. . .])+ · @ · ([. . .])+ · . · . . .

meaning first comes a name (specified by the regular expression ([. . .])+), then
an @-sign, then a domain name (specified by the regular expression ([. . .])+),
then a dot and then a top-level domain. Similarly if we want to specify the
regular expression for the string ”hello” we should write

h · e · l · l · o

but often just write hello.
Another source of confusion might arise from the fact that we use the term

regular expression for the regular expressions used in “theory” and also the ones
used in “practice”. In this course we refer by default to the regular expressions
defined by the grammar above. In “practice” we often use r+ to stand for one or
more times, \d to stand for a digit, r? to stand for an optional regular expression,
or ranges such as [a - z] to stand for any lower case letter from a to z. They are
however mere convenience as they can be seen as shorthand for

r+ 7→ r · r∗

r? 7→ ϵ + r
\d 7→ 0 + 1 + 2 + . . . + 9

[a - z] 7→ a + b + . . . + z

We will see later that the not-regular-expression can also be seen as con-
venience. This regular expression is supposed to stand for every string not
matched by a regular expression. We will write such not-regular-expressions as
∼ r. While being “convenience” it is often not so clear what the shorthand for
these kind of not-regular-expressions is. Try to write down the regular expres-
sion which can match any string except the two strings ”hello” and ”world”. It
is possible in principle, but often it is easier to just include ∼ r in the definition
of regular expressions. Whenever we do so, we will state it explicitly.

So far we have only considered informally what the meaning of a regular ex-
pression is. To do so more formally we will associate with every regular expres-
sion a set of strings that is supposed to be matched by this regular expression.
This can be defined recursively as follows

5

L(∅)
def
= { }

L(ϵ) def
= {””}

L(c) def
= {”c”}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= {s1@s2|s1 ∈ L(r1) ∧ s2 ∈ L(r2)}

L(r∗) def
=

∪
n≥0 L(r)n

As a result we can now precisely state what the meaning, for example, of the
regular expression h · e · l · l · o is, namely L(h · e · l · l · o) = {”hello”}...as expected.
Similarly if we have the choice-regular-expression a + b, its meaning is L(a +
b) = {”a”, ”b”}, namely the only two strings which can possibly be matched by
this choice. You can now also see why we do not make a difference between the
different regular expressions (r1 + r2) + r3 and r1 + (r2 + r3)....they are not the
same regular expression, but have the same meaning.

The point of the definition of L is that we can use it to precisely specify when
a string s is matched by a regular expression r, namely only when s ∈ L(r). In
fact we will write a program match that takes any string s and any regular
expression r as argument and returns yes, if s ∈ L(r) and no, if s ̸∈ L(r). We
leave this for the next lecture.

6

1 // A crawler which checks whether there
2 // are problems with links in web-pages
3

4 import io.Source
5 import scala.util.matching.Regex
6 import scala.util._
7

8 // gets the first 10K of a web-page
9 def get_page(url: String) : String = {

10 Try(Source.fromURL(url).take(10000).mkString) getOrElse
11 { println(s" Problem with: $url"); ""}
12 }
13

14 // regex for URLs
15 val http_pattern = """\"https?://[^\"]*\"""".r
16

17 // drops the first and last character from a string
18 def unquote(s: String) = s.drop(1).dropRight(1)
19

20 def get_all_URLs(page: String) : Set[String] = {
21 http_pattern.findAllIn(page).map(unquote).toSet
22 }
23

24 // naive version - seraches until a given depth
25 // visits pages potentially more than once
26 def crawl(url: String, n: Int) : Unit = {
27 if (n == 0) ()
28 else {
29 println(s"Visiting: $n $url")
30 for (u <- get_all_URLs(get_page(url))) crawl(u, n - 1)
31 }
32 }
33

34 // staring URL for the crawler
35 val startURL = """http://www.inf.kcl.ac.uk/staff/urbanc/"""
36 //val startURL = """http://www.inf.kcl.ac.uk/staff/mml/"""
37

38 crawl(startURL, 2)

Figure 1: Scala code for a web-crawler that can detect broken links in a web-
page. It uses the regular expression http_pattern in Line 15 for recognis-
ing URL-addresses. It finds all links using the library function findAllIn in
Line 21.

7

1 // This version of the crawler only
2 // checks links in the "domain" urbanc
3

4 import io.Source
5 import scala.util.matching.Regex
6 import scala.util._
7

8 // gets the first 10K of a web-page
9 def get_page(url: String) : String = {

10 Try(Source.fromURL(url).take(10000).mkString) getOrElse
11 { println(s" Problem with: $url"); ""}
12 }
13

14 // regexes for URLs and "my" domain
15 val http_pattern = """\"https?://[^\"]*\"""".r
16 val my_urls = """urbanc""".r
17

18 def unquote(s: String) = s.drop(1).dropRight(1)
19

20 def get_all_URLs(page: String) : Set[String] = {
21 http_pattern.findAllIn(page).map(unquote).toSet
22 }
23

24 def crawl(url: String, n: Int) : Unit = {
25 if (n == 0) ()
26 else if (my_urls.findFirstIn(url) == None) {
27 println(s"Visiting: $n $url")
28 get_page(url); ()
29 }
30 else {
31 println(s"Visiting: $n $url")
32 for (u <- get_all_URLs(get_page(url))) crawl(u, n - 1)
33 }
34 }
35

36 // staring URL for the crawler
37 val startURL = """http://www.inf.kcl.ac.uk/staff/urbanc/"""
38

39 // can now deal with depth 3 and beyond
40 crawl(startURL, 3)

Figure 2: A version of the web-crawler which only follows links in “my”
domain—since these are the ones I am interested in to fix. It uses the reg-
ular expression my_urls in Line 16. The main change is in Line 26 where there
is a test whether URL is in “my” domain or not.

8

1 // This version of the crawler that also
2 // "harvests" email addresses from webpages
3

4 import io.Source
5 import scala.util.matching.Regex
6 import scala.util._
7

8 def get_page(url: String) : String = {
9 Try(Source.fromURL(url).take(10000).mkString) getOrElse

10 { println(s" Problem with: $url"); ""}
11 }
12

13 // regexes for URLs, for "my" domain and for email addresses
14 val http_pattern = """\"https?://[^\"]*\"""".r
15 val my_urls = """urbanc""".r
16 val email_pattern = """([a-z0-9_\.-]+)@([\da-z\.-]+)\.([a-z\.]{2,6})""".r
17

18 // The regular expression for emails comes from:
19 // http://net.tutsplus.com/tutorials/other/8-regular-expressions-you-should-know/
20

21 def unquote(s: String) = s.drop(1).dropRight(1)
22

23 def get_all_URLs(page: String) : Set[String] = {
24 http_pattern.findAllIn(page).map(unquote).toSet
25 }
26

27 def crawl(url: String, n: Int) : Unit = {
28 if (n == 0) ()
29 //else if (my_urls.findFirstIn(url) == None) ()
30 else {
31 println(s"Visiting: $n $url")
32 val page = get_page(url)
33 println(email_pattern.findAllIn(page).mkString("\n"))
34 for (u <- get_all_URLs(page)) crawl(u, n - 1)
35 }
36 }
37

38 // staring URL for the crawler
39 val startURL = """http://www.inf.kcl.ac.uk/staff/urbanc/"""
40

41 crawl(startURL, 3)

Figure 3: A small email harvester—whenever we download a web-page, we also
check whether it contains any email addresses. For this we use the regular
expression email_pattern in Line 17. The main change is in Lines 33 and 34
where all email addresses that can be found in a page are printed.

9

