Compilers and
Formal Languages (1)

Antikythera automaton, 100 BC (Archimedes?)

Email: christian.urban at kcl.ac.uk
Office: Sr1.27 (st floor Strand Building)
Slides: KEATS
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lexing = recognising words (Stone of Rosetta)
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parser input: a sequence of token
parser output: an abstract syntax tree
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The subject is quite old

o Turing Machines, 1936

e Regular Expressions, 1956

o The first compiler for COBOL, 1957
(Grace Hopper)

o But surprisingly research papers are still
published nowadays

Grace Hopper
(she made it to David Letterman’s Tonight Show,

http://www.youtube.com/watch?v=aZOxtURhfEU)


http://www.youtube.com/watch?v=aZOxtURhfEU

Why Bother?

Ruby, Python, Java
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Lectures1- 5

transforming strings into structured data
[
Lexing
(recognising “words”)

Parsing

(recognising “sentences”)

Stone of Rosetta



Lectures1- 5

transforming strings into structured data
[ ]
LeXIng based on regular expressions
(recognising “words”)

Parsing

(recognising “sentences”)

Stone of Rosetta



Familiar Regular Expr.

[2-z0-9_.-]+ @ [2a-z0-9.-]+ . [a-z.]{2,6}

re*

re+

re?
re{n}
re{n,m}
[...]
[~...]

a-zA-7Z
\d

(re)

matches o or more times

matches 1 or more times

matches o or 1 times

matches exactly n number of times

matches at least n and at most m times

matches any single character inside the brackets
matches any single character not inside the
brackets

character ranges

matches digits; equivalent to [0-9]

matches every character except newline

groups regular expressions and remembers the
matched text



Today

e While the ultimate goal is to implement a small
compiler (a really small one for the JVM)...

Let’s start with:

@ a web-crawler
@ an email harvester
e (a web-scraper)



A Web-Crawler

@ given an URL, read the corresponding webpage
@ extract all links from it
@ call the web-crawler again for all these links
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@ if not possible print, out a problem
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© call the web-crawler again for all these links



A Web-Crawler

@ given an URL, read the corresponding webpage
@ if not possible print, out a problem

@ if possible, extract all links from it

© call the web-crawler again for all these links

(we need a bound for the number of recursive calls)
(the purpose is to check all links on my own webpage)



GET request

Wiebpase » ay
POST data Browser




Scala

A simple Scala function for reading webpages:

import io.Source

def get_page(url: String) : String = {
Source.fromURL(url).take(10000).mkString
}
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Scala

A simple Scala function for reading webpages:

import io.Source

def get_page(url: String) : String = {
Source.fromURL(url).take(10000).mkString
}

get_page(”””’http://www.inf.kcl.ac.uk/staff/urbanc/”"”)

A slightly more complicated version for handling errors:

def get_page(url: String) : String = {
Try(Source.fromURL(url).take(10000).mkString).
getOrkElse { println(s” Problem with: $url”); *”}



