Compilers and
Formal Languages (1)

Antikythera automaton, 100 BC (Archimedes?)

Email: christian.urban at kcl.ac.uk
Office: Sr1.27 (st floor Strand Building)
Slides: KEATS



The Goal of this Course

Write A Compiler

lexer parser code gen




The Goal of this Course

[lexer input: a string
”read(n);”

lexer output: a sequence of tokens

key(read); lpar; id(n); rpar; semi

parser code gen



The Goal of this Course

(lexer input: a string
”read(n);”

lexer output: a sequence of tokens

key(read); lpar; id(n); rpar; semi

S

lexing = recognising words (Stone of Rosetta)



_The Goaal of this Coyrse

parser input: a sequence of token
parser output: an abstract syntax tree

read
1par n rpar

parser

)
lexer code gen




_The Gaal of this Course

code generator:
istore 2
iload 2
ldc 10

isub h A Compiler

ifeq Label2

iload 2 parser code gen
N 4




_The Goal of this Course

code generator:

istore 2
iload 2

ldc 10

isub

ifeq Label2
iload 2

I 4

parse

Secs

* A Compiler

400

300

Ll

T T T T
200 400 oo 8oo 1,0001,200

n




The subject is quite old

o Turing Machines, 1936

e Regular Expressions, 1956

o The first compiler for COBOL, 1957
(Grace Hopper)

o But surprisingly research papers are still
published nowadays

Grace Hopper
(she made it to David Letterman’s Tonight Show,

http://www.youtube.com/watch?v=aZOxtURhfEU)


http://www.youtube.com/watch?v=aZOxtURhfEU

Why Bother?

Ruby, Python, Java
r
¢ 30 || —e—Python
g —+— Ruby
.E 20
L
£
5§ 10 15 20 25 30 "

» 30
o 325
2 20
S
g o
5

o

§ 10 15 20 25§ 30 M

Us (after next lecture)

time in secs

time in secs

30 ¢
25 |
20 |
15 |
10

5

o

30 |
25 +
20 |
15 +
10 |

g -

o 5,000 10,000"

o 6

2-10% 4-10° 6-10

matching [a?]{n}[a]{n} and [a*]*b against&.’.a/

n



Lectures1- 5

transforming strings into structured data
[
Lexing
(recognising “words”)

Parsing

(recognising “sentences”)

Stone of Rosetta



Lectures1- 5

transforming strings into structured data
[ ]
LeXIng based on regular expressions
(recognising “words”)

Parsing

(recognising “sentences”)

Stone of Rosetta



Familiar Regular Expr.

[2-z0-9_.-]+ @ [2a-z0-9.-]+ . [a-z.]{2,6}

re*

re+

re?
re{n}
re{n,m}
[...]
[~...]

a-zA-7Z
\d

(re)

matches o or more times

matches 1 or more times

matches o or 1 times

matches exactly n number of times

matches at least n and at most m times

matches any single character inside the brackets
matches any single character not inside the
brackets

character ranges

matches digits; equivalent to [0-9]

matches every character except newline

groups regular expressions and remembers the
matched text



Today

e While the ultimate goal is to implement a small
compiler (a really small one for the JVM)...

Let’s start with:

@ a web-crawler
@ an email harvester
e (a web-scraper)



A Web-Crawler

@ given an URL, read the corresponding webpage
@ extract all links from it
@ call the web-crawler again for all these links



A Web-Crawler

@ given an URL, read the corresponding webpage
@ if not possible print, out a problem

@ if possible, extract all links from it

© call the web-crawler again for all these links



A Web-Crawler

@ given an URL, read the corresponding webpage
@ if not possible print, out a problem

@ if possible, extract all links from it

© call the web-crawler again for all these links

(we need a bound for the number of recursive calls)
(the purpose is to check all links on my own webpage)



GET request

Wiebpase » ay
POST data Browser




Scala

A simple Scala function for reading webpages:

import io.Source

def get_page(url: String) : String = {
Source.fromURL(url).take(10000).mkString
}



Scala

A simple Scala function for reading webpages:

import io.Source

def get_page(url: String) : String = {
Source.fromURL(url).take(10000).mkString
}

get_page(”””’http://www.inf.kcl.ac.uk/staff/urbanc/”"”)



Scala

A simple Scala function for reading webpages:

import io.Source

def get_page(url: String) : String = {
Source.fromURL(url).take(10000).mkString
}

get_page(”””’http://www.inf.kcl.ac.uk/staff/urbanc/”"”)

A slightly more complicated version for handling errors:

def get_page(url: String) : String = {
Try(Source.fromURL(url).take(10000).mkString).
getOrkElse { println(s” Problem with: $url”); *”}



