Automata and
Formal Languages (3)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)
(I have put a temporary link in there.)

Last Week

Last week I showed you
@ one simple-minded regular expression matcher
(which however does not work in all cases), and
@ one which works provably in all cases

matcher rs if andonly if s & L(r)

The Derivative of a Rexp

der ¢ (@) =
der ¢ (€) Ly
der ¢ (d) & if c = d then e else @

der c (ri +rs) = (dercrqy)+ (dercrs)

der c(r1 - rp) " if nullable r
then ((der c ry) - ry) + (der c ry)
else (dercry) - ry

der c (r*) = (dercr)- (r)

"the regular expression after c has been
recognised"

For this we defined the set Der c A as
Derc AZ {s]|cis e A}

which is called the semantic derivative of a set
and proved

L(der c r) = Der c (L(r))

The Idea of the Algorithm

If we want to recognise the string abc with
regular expression r then

Q@ Dera (L(r))

The Idea of the Algorithm

If we want to recognise the string abc with
regular expression r then

@ Dera (L(r)
@ Der b (Der a (L(r)))
@ Der c (Der b (Der a (L(r))))

The Idea of the Algorithm

If we want to recognise the string abc with
regular expression r then

Q@ Dera (L(r))

Q@ Der b (Der a (L(r)))

@ Der ¢ (Der b (Der a (L(r))))

© finally we test whether the empty string is in set

The Idea of the Algorithm

If we want to recognise the string abc with
regular expression r then

Q@ Dera (L(r))

Q@ Der b (Der a (L(r)))

@ Der ¢ (Der b (Der a (L(r))))

© finally we test whether the empty string is in set

The matching algorithm works similarly, just over
regular expression than sets.

Input: string abc and regular expression r

Q@ derar
@ derb(derar)
@ derc(derb(derar))

Input: string abc and regular expression r

Q derar
@ derb(derar)
@ derc(derb(derar))

@ finally check whether the latter regular
expression can match the empty string

We need to prove
L(der c r) = Der c (L(r))

by induction on the regular expression.

Proofs about Rexp

@ P holds for @, eand c

@ P holds for ry + ry under the assumption that P
already holds for ry and r.

@ P holds for ry « ry under the assumption that P
already holds for ry and rs.

@ P holds for r* under the assumption that P
already holds for r.

Proofs about Natural Numbers
and Strings

@ P holds for 0 and

@ P holds for n + 1 under the assumption that P
already holds for n

@ P holds for "" and

@ P holds for c:: s under the assumption that P
already holds for s

r

Regular Expressions

1%
€
C
ry - re
rp +ro

null

empty string /""" / []
character

sequence
alternative / choice
star (zero or more)

r

Regular Expressions

1%
€
C
ry - re
rp +ro

null

empty string /""" / []
character

sequence
alternative / choice
star (zero or more)

Languages

A language is a set of strings.

A regular expression specifies a set of strings or
language.

A language is regular iff there exists a regular
expression that recognises all its strings.

Languages

A language is a set of strings.

A regular expression specifies a set of strings or
language.

A language is regular iff there exists a regular
expression that recognises all its strings.

not all languages are regular, e.g. a™b™.

Regular Expressions

r u= o null
| € empty string /""" / []
| ¢ character
| r1ery sequence
| ri+r, alternative / choice
| r* star (zero or more)

How about ranges [a-z], r* and Ir?

Negation of Regular Expr’s

@ Ir (everything that r cannot recognise)
o L(Ir) £ UNIV - L(r)
o nullable (Ir) £ not (nullable(r))

@ derc(lr) «f I(dercr)

Regular Exp’s for Lexing

Lexing separates strings into "words" /
components.

@ Identifiers (non-empty strings of letters or
digits, starting with a letter)

@ Numbers (non-empty sequences of digits omitting
leading zeros)

@ Keywords (else, if, while, ...)

@ White space (a non-empty sequence of blanks,
newlines and tabs)

@ Comments

Automata

A deterministic finite automaton consists of:

a set of states

one of these states is the start state
some states are accepting states, and
there is transition function

which takes a state as argument and a character and
produces a new state

this function might not always be defined

