
Handout 9 (LLVM, SSA and CPS)
Reflecting on our tiny compiler targetting the JVM, the code generation part
was actually not so hard, no? Pretty much just some post‑traversal of the ab‑
stract syntax tree, yes? One of the main reason for this ease is that the JVM is a
stack‑based virtual machine and it is therefore not hard to translate arithmetic
expressions into a sequence of instructions manipulating the stack. The prob‑
lem is that “real” CPUs, although supporting stack operations, are not really
designed to be stack machines. The design of CPUs is more like, here is a chunk
ofmemory—compiler, or better compiler writers, do somethingwith it. Conse‑
quently, modern compilers need to go the extra mile in order to generate code
that is much easier and faster to process by CPUs. To make this all tractable for
this module, we target the LLVM Intermediate Language. In this way we can
take advantage of the tools coming with LLVM. For example we do not have to
worry about things like register allocations.

LLVM1 is a beautiful example that projects from Academia can make a differ‑
ence in the world. LLVM started in 2000 as a project by two researchers at the
University of Illinois at Urbana‑Champaign. At the time the behemoth of com‑
pilers was gcc with its myriad of front‑ends for other languages (e.g. Fortran,
Ada, Go, Objective‑C, Pascal etc). The problemwas that gccmorphed over time
into amonolithic gigantic piece ofm…ehm software, which you could notmess
about in an afternoon. In contrast, LLVM is designed to be a modular suite of
tools with which you could play around easily and try out something new.
LLVM became a big player once Apple hired one of the original developers (I
cannot remember the reason why Apple did not want to use gcc, but maybe
they were also just disgusted by its big monolithic codebase). Anyway, LLVM
is now the big player and gcc is more or less legacy. This does not mean that
programming languages like C and C++ are dying out any time soon—they are
nicely supported by LLVM.

Targetting the LLVM Intermediate Language, or Intermediate Representa‑
tion (short LLVM‑IR), alsomeanswe can profit from the verymodular structure
of the LLVM compiler and let for example the compiler generate code for X86,
orARMetc. Thatmeanswe can be agnostic aboutwhere our code actually runs.
However, whatwe have to do is to generate code in Static Single‑Assignment for‑
mat (short SSA), because that is what the LLVM‑IR expects from us. LLVM‑IR
is the intermediate format that LLVM uses for doing cool things, like targetting
strange architectures, optimising code and allocating memory efficiently.

The idea behind the SSA format is to use very simple variable assignments
where every variable is assigned only once. The assignments also need to be
primitive in the sense that they can be just simple operations like addition, mul‑
tiplication, jumps, comparisons and so on. An idealised snippet of a program
in SSA is

© Christian Urban, King’s College London, 2019
1http://llvm.org

1

http://llvm.org


x := 1
y := 2
z := x + y

where every variable is used only once (we could not write x := x + y in the
last line for example). There are sophisticated algorithms for imperative lan‑
guages, like C, that efficiently transform a high‑level program into SSA for‑
mat. But we can ignore them here. We want to compile a functional language
and there things get much more interesting than just sophisticated. We will
need to have a look at CPS translations, where the CPS stands for Continuation‑
Passing‑Style—basically black programming art or abracadabra programming.
So sit tight.

LLVM‑IR
Before we start, lets first have a look at the LLVM Intermediate Representation.
What is good about our simple Fun language is that it basically only contains
expressions (be they arithmetic expressions or boolean expressions). The ex‑
ception is function definitions. Luckily, for them we can use the mechanism of
defining functions in LLVM‑IR. For example the simple Fun program

def sqr(x) = x * x

can be compiled into the following LLVM‑IR function:

define i32 @sqr(i32 %x) {
%tmp = mul i32 %x, %x
ret i32 %tmp

}

First to notice is that all variable names in the LLVM‑IR are prefixed by %; func‑
tion names need to be prefixed with @. Also, the LLVM‑IR is a fully typed
language. The i32 type stands for a 32‑bit integer. There are also types for 64‑
bit integers, chars (i8), floats, arrays and even pointer types. In teh code above,
sqr takes an argument of type i32 and produces a result of type i32. Each
arithmetic operation, like addition or multiplication, are also prefixed with the
type they operate on. Obviously these types need to match up… but since we
have in our programs only integers, i32 everywhere will do.

Conveniently, you can use the program lli, which comeswith LLVM, to in‑
terpret programs written in the LLVM‑IR. So you can easily check whether the
code you produced actually works. To get a running program that does some‑
thing interesting you need to add some boilerplate about printing out numbers
and a main‑function that is the entrypoint for the program (see Figure 1). You
can generate a binary for this program using llc‑compiler in order to generate
an object file and then use gcc (clang) for generating a binary:

2



1 @.str = private constant [4 x i8] c"%d\0A\00"
2

3 declare i32 @printf(i8*, ...)
4

5 ; prints out an integer
6 define i32 @printInt(i32 %x) {
7 %t0 = getelementptr [4 x i8], [4 x i8]* @.str, i32 0, i32 0
8 call i32 (i8*, ...) @printf(i8* %t0, i32 %x)
9 ret i32 %x
10 }
11

12 ; square function
13 define i32 @sqr(i32 %x) {
14 %tmp = mul i32 %x, %x
15 ret i32 %tmp
16 }
17

18 ; main
19 define i32 @main() {
20 %1 = call i32 @sqr(i32 5)
21 %2 = call i32 @printInt (i32 %1)
22 ret i32 %1
23 }

Figure 1: An LLVM‑IR program for calculating the square function. The inter‑
esting function is sqr in Lines 13 – 16. The main function calls sqr and prints
out the result. The other code is boilerplate for printing out integers.

llc -filetype=obj sqr.ll
gcc sqr.o -o a.out
./a.out

Our Own Intermediate Language
Remember compilers have to solve the problem of bridging the gap between
“high‑level” programs and “low‑level” hardware. If the gap is tool wide then a
good strategy is to lay a stepping stone somewhere in between. The LLVM‑IR
itself is such a stepping stone to make the task of generating code easier. Like
a real compiler we will use another stepping stone which I call K‑language. For
this remember expressions (and boolean expressions) in the Fun language are
given by the code on top of Figure 2

3



// Fun-language (expressions)
abstract class Exp
abstract class BExp

case class Call(name: String, args: List[Exp]) extends Exp
case class If(a: BExp, e1: Exp, e2: Exp) extends Exp
case class Write(e: Exp) extends Exp
case class Var(s: String) extends Exp
case class Num(i: Int) extends Exp
case class Aop(o: String, a1: Exp, a2: Exp) extends Exp
case class Sequence(e1: Exp, e2: Exp) extends Exp
case class Bop(o: String, a1: Exp, a2: Exp) extends BExp

// K-language (K-expressions , K-values)
abstract class KExp
abstract class KVal

case class KVar(s: String) extends KVal
case class KNum(i: Int) extends KVal
case class Kop(o: String, v1: KVal, v2: KVal) extends KVal
case class KCall(o: String, vrs: List[KVal]) extends KVal
case class KWrite(v: KVal) extends KVal

case class KIf(x1: String, e1: KExp, e2: KExp) extends KExp
case class KLet(x: String, e1: KVal, e2: KExp) extends KExp
case class KReturn(v: KVal) extends KExp

Figure 2: Abstract syntax trees for the Fun language.

4



CPS‑Translations
Another reasonwhy itmakes sense to go the extramile is that stack instructions
are very difficult to optimise—you cannot just re‑arrange instructions without
messing about with what is calculated on the stack. Also it is hard to find out if
all the calculations on the stack are actually necessary and not by chance dead
code. The JVM has for all this sophisticated machinery to make such “high‑
level” code still run fast, but let’s say that for the sake of argument we do not
want to rely on it. Wewant to generate fast code ourselves. Thismeanswe have
to work around the intricacies of what instructions CPUs can actually process.

5


