
Handout 7 (Compilation)
The purpose of a compiler is to transform a program a human can read and
write into code the machine can run as fast as possible. The fastest code would
be machine code the CPU can run directly, but it is often good enough for im‑
proving the speed of a program to target a virtual machine. This produces not
the fastest possible code, but code that is often pretty fast. This way of pro‑
ducing code has the advantage that the virtual machine takes care of things a
compiler would normally need to take care of (like explicit memory manage‑
ment).

As a first example in this module we will implement a compiler for the
very simple While‑language. It will generate code for the Java Virtual Ma‑
chine (JVM). Unfortunately the Java ecosystem does not come with an assem‑
bler which would be handy for our compiler‑endeavour (unlike Microsoft’s
Common Language Infrastructure for the .Net platform which has an assem‑
bler out‑of‑the‑box). As a substitute we use in this module the 3rd‑party pro‑
grams Jasmin and Krakatau

• http://jasmin.sourceforge.net

• https://github.com/Storyyeller/Krakatau

The first is a Java program and the second a program written in Python. Each
of them allow us to generate assembly files that are still readable by humans,
as opposed to class‑files which are pretty much just (horrible) zeros and ones.
Jasmin (respectively Krakatau) will then take an assembly file as input and gen‑
erate the corresponding class file for us.

Good about the JVM is that it is a stack‑based virtual machine, a fact which
will make it easy to generate code for arithmetic expressions. For example
when compiling the expression 1 + 2 we need to generate the following three
instructions

ldc 1
ldc 2
iadd

The first instruction loads the constant 1 onto the stack, the next one loads 2, the
third instruction adds both numbers together replacing the top two elements
of the stack with the result 3. For simplicity, we will throughout consider only
integer numbers and results. Therefore we can use the JVM instructions iadd,
isub, imul, idiv and so on. The i stands for integer instructions in the JVM
(alternatives are d for doubles, l for longs and f for floats).

Recall our grammar for arithmetic expressions (E is the starting symbol):

E ::= T + E | T − E | T
T ::= F ∗ T | F \ T | F

© Christian Urban, King’s College London, 2017, 2018, 2019

1

http://jasmin.sourceforge.net
https://github.com/Storyyeller/Krakatau

F ::= (E) | Id | Num

where Id stands for variables and Num for numbers. For the moment let us
omit variables from arithmetic expressions. Our parser will take this grammar
and given an input produce abstract syntax trees. For example we will obtain
for the expression 1 + ((2 ∗ 3) + (4 − 3)) the following tree.

+

+

−

34

∗

32

1

To generate JVM code for this expression, we need to traverse this tree in post‑
order fashion and emit code for each node—this traversal in post‑order fashion
will produce code for a stack‑machine (what the JVM is). Doing so for the tree
above generates the instructions

ldc 1
ldc 2
ldc 3
imul
ldc 4
ldc 3
isub
iadd
iadd

If we “run” these instructions, the result 8 will be on top of the stack (I leave
this to you to verify; the meaning of each instruction should be clear). The
result being on the top of the stack will be an important convention we always
observe in our compiler. Note, that a different bracketing of the expression, for
example (1 + (2 ∗ 3)) + (4 − 3), produces a different abstract syntax tree and
thus also a different list of instructions. Generating code in this post‑order‑
traversal fashion is rather easy to implement: it can be done with the following
recursive compile‑function, which takes the abstract syntax tree as argument:

compile(n) def
= ldc n

compile(a1 + a2)
def
= compile(a1) @ compile(a2) @ iadd

compile(a1 − a2)
def
= compile(a1) @ compile(a2) @ isub

compile(a1 ∗ a2)
def
= compile(a1) @ compile(a2) @ imul

compile(a1\a2)
def
= compile(a1) @ compile(a2) @ idiv

2

However, our arithmetic expressions can also contain variables. We will
represent them as local variables in the JVM. Essentially, local variables are an
array or pointers tomemory cells, containing in our case only integers. Looking
up a variable can be done with the instruction

iload index

which places the content of the local variable index onto the stack. Storing the
top of the stack into a local variable can be done by the instruction

istore index

Note that this also pops off the top of the stack. One problem we have to over‑
come, however, is that local variables are addressed, not by identifiers, but by
numbers (starting from 0). Therefore our compiler needs to maintain a kind of
environmentwhere variables are associated to numbers. This association needs
to be unique: if we muddle up the numbers, then we essentially confuse vari‑
ables and the consequence will usually be an erroneous result. Our extended
compile‑function for arithmetic expressions will therefore take two arguments:
the abstract syntax tree and the environment, E, that maps identifiers to index‑
numbers.

compile(n, E) def
= ldc n

compile(a1 + a2, E) def
= compile(a1, E) @ compile(a2, E) @ iadd

compile(a1 − a2, E) def
= compile(a1, E) @ compile(a2, E) @ isub

compile(a1 ∗ a2, E) def
= compile(a1, E) @ compile(a2, E) @ imul

compile(a1\a2, E) def
= compile(a1, E) @ compile(a2, E) @ idiv

compile(x, E) def
= iload E(x)

In the last line we generate the code for variables where E(x) stands for look‑
ing up the environment to which index the variable x maps to. This is similar
to an interpreter, which also needs an environment: the difference is that the
interpreter maintains a mapping from variables to current values (what is the
currently the value of a variable), while compilers need a mapping from vari‑
ables to memory locations (where can I find the current value for the variable
in memory).

There is a similar compile‑function for boolean expressions, but it includes
a “trick” to do with if‑ and while‑statements. To explain the issue let us first
describe the compilation of statements of the While‑language. The clause for
skip is trivial, since we do not have to generate any instruction

compile(skip, E) def
= ([], E)

whereby [] is the empty list of instructions. Note that the compile‑function for
statements returns a pair, a list of instructions (in this case the empty list) and an
environment for variables. The reason for the environment is that assignments
in the While‑language might change the environment—clearly if a variable is

3

used for the first time, we need to allocate a new index and if it has been used
before, thenwe need to be able to retrieve the associated index. This is reflected
in the clause for compiling assignments, say x := a:

compile(x := a, E) def
= (compile(a, E) @ istore index, E′)

We first generate code for the right‑hand side of the assignment and then add
an istore‑instruction at the end. By convention the result of the arithmetic
expression a will be on top of the stack. After the istore instruction, the result
will be stored in the index corresponding to the variable x. If the variable x
has been used before in the program, we just need to look up what the index is
and return the environment unchanged (that is in this case E′ = E). However,
if this is the first encounter of the variable x in the program, then we have to
augment the environment and assign xwith the largest index in E plus one (that
is E′ = E(x 7→ largest_index + 1)). This means for the assignment x := x + 1
we generate the following code

iload nx
ldc 1
iadd
istore nx

where nx is the index (or pointer to the memory) for the variable x . The code
for looking‑up the index for the variable is as follow:

index = E.getOrElse(x, |E|)

In case the environment E contains an index for x, we return it. Otherwise we
“create” a new index by returning the size |E| of the environment (that will be
an index that is guaranteed to be not used yet).

A bit more complicated is the generation of code for if‑statements, say

if b then cs1 else cs2

where b is a boolean expression and the cs1/2 are the statements for each of the
if‑branches. Lets assume we already generated code for b and cs1/2. Then in
the true‑case the control‑flow of the program needs to be

code of b code of cs1 code of cs2

jump

where we start with running the code for b; since we are in the true case we
continue with running the code for cs1. After this however, we must not run
the code for cs2, but always jump after the last instruction of cs2 (the code for the
else‑branch). Note that this jump is unconditional, meaning we always have
to jump to the end of cs2. The corresponding instruction of the JVM is goto. In
case b turns out to be false we need the control‑flow

4

code of b code of cs1 code of cs2

conditional jump

where we now need a conditional jump (if the if‑condition is false) from the
end of the code for the boolean to the beginning of the instructions cs2. Once
we are finished with running cs2 we can continue with whatever code comes
after the if‑statement.

The goto and the conditional jumps need addresses towhere the jump should
go. Sincewe are generating assembly code for the JVM,we do not actually have
to give (numeric) addresses, but can just attach (symbolic) labels to our code.
These labels specify a target for a jump. Therefore the labels need to be unique,
as otherwise it would be ambiguous where a jump should go to. A label, say L,
is attached to code like

L:
instr1
instr2

...

where a label is indicated by a colon.
Recall the “trick” with compiling boolean expressions: the compile‑function

for boolean expressions takes three arguments: an abstract syntax tree, an en‑
vironment for variable indices and also the label, lab, to where an conditional
jump needs to go. The clause for the expression a1 = a2, for example, is as
follows:

compile(a1 = a2, E, lab) def
=

compile(a1, E) @ compile(a2, E) @ if_icmpne lab

where we are first generating code for the subexpressions a1 and a2. This will
mean after running the corresponding code there will be two integers on top
of the stack. If they are equal, we do not have to do anything (except for pop‑
ping them off from the stack) and just continue with the next instructions (see
control‑flow of ifs above). However if they are not equal, then we need to (con‑
ditionally) jump to the label lab. This can be done with the instruction

if_icmpne lab

Other jump instructions for boolean operators are

6= ⇒ if_icmpeq
< ⇒ if_icmpge
≤ ⇒ if_icmpgt

and so on. I leave it to you to extend the compile‑function for the other boolean
expressions. Note thatwe need to jumpwhenever the boolean is not true, which

5

meanswehave to “negate” the jump condition—equals becomes not‑equal, less
becomes greater‑or‑equal. If you do not like this design (it can be the source of
some nasty, hard‑to‑detect errors), you can also change the layout of the code
and first give the code for the else‑branch and then for the if‑branch. How‑
ever in the case of while‑loops this way of generating code still seems the most
convenient.

We are now ready to give the compile function for if‑statements—remember
this function returns for statements a pair consisting of the code and an envi‑
ronment:

compile(if b then cs1 else cs2, E) def
=

Lifelse (fresh label)
Lifend (fresh label)
(is1, E′) = compile(cs1, E)
(is2, E′′) = compile(cs2, E′)
(compile(b, E, Lifelse)
@ is1
@ goto Lifend
@ Lifelse :
@ is2
@ Lifend :, E′′)

In the first two lines we generate two fresh labels for the jump addresses (just
before the else‑branch and just after). In the next two lines we generate the
instructions for the two branches, is1 and is2. The final code will be first the
code for b (including the label just‑before‑the‑else‑branch), then the goto for
after the else‑branch, the label Lifesle, followed by the instructions for the else‑
branch, followed by the after‑the‑else‑branch label. Consider for example the
if‑statement:

if 1 = 1 then x := 2 else y := 3

The generated code is as follows:

1 ldc 1
2 ldc 1
3 if_icmpne L_ifelse
4 ldc 2
5 istore 0
6 goto L_ifend
7 L_ifelse:
8 ldc 3
9 istore 1
10 L_ifend:

The first three lines correspond to the the boolean expression 1 = 1. The jump
for when this boolean expression is false is in Line 3. Lines 4‑6 corresponds
to the if‑branch; the else‑branch is in Lines 8 and 9. Note carefully how the

6

environment E is threaded through the recursive calls of compile. The function
receives an environment E, but it might extend it when compiling the if‑branch,
yielding E′. This happens for example in the if‑statement above whenever the
variable x has not been used before. Similarly with the environment E′′ for the
second call to compile. E′′ is also the environment that needs to be returned as
part of the answer.

The compilation of thewhile‑loops, say while b do cs, is very similar. In case
the condition is true and we need to do another iteration, and the control‑flow
needs to be as follows

code of b code of cs

Whereas if the condition is not true, we need to jump out of the loop, which
gives the following control flow.

code of b code of cs

Again we can use the compile‑function for boolean expressions to insert the ap‑
propriate jump to the end of the loop (label Lwend below).

compile(while b do cs, E) def
=

Lwbegin (fresh label)
Lwend (fresh label)
(is, E′) = compile(cs1, E)
(Lwbegin :
@ compile(b, E, Lwend)
@ is
@ goto Lwbegin
@ Lwend :, E′)

I let you go through how this clause works. As an example you can consider
the while‑loop

while x <= 10 do x := x + 1

yielding the following code

7

1 L_wbegin:
2 iload 0
3 ldc 10
4 if_icmpgt L_wend
5 iload 0
6 ldc 1
7 iadd
8 istore 0
9 goto L_wbegin
10 L_wend:

I leave it to you to read the code and follow its controlflow.
Next we need to consider the statement write x, which can be used to print

out the content of a variable. For this we need to use a Java library function. In
order to avoid having to generate a lot of code for each write‑command, we use
a separate helper‑method and just call this method with an argument (which
needs to be placed onto the stack). The code of the helper‑method is as follows.

1 .method public static write(I)V
2 .limit locals 1
3 .limit stack 2
4 getstatic java/lang/System/out Ljava/io/PrintStream;
5 iload 0
6 invokevirtual java/io/PrintStream/println(I)V
7 return
8 .end method

The first line marks the beginning of the method, called write. It takes a sin‑
gle integer argument indicated by the (I) and returns no result, indicated by
the V. Since the method has only one argument, we only need a single local
variable (Line 2) and a stack with two cells will be sufficient (Line 3). Line 4 in‑
structs the JVM to get the value of the field out of the class java/lang/System.
It expects the value to be of type java/io/PrintStream. A reference to this
value will be placed on the stack. Line 5 copies the integer we want to print
out onto the stack. In the next line we call the method println (from the class
java/io/PrintStream). Wewant to print out an integer and do not expect any‑
thing back (that is why the type annotation is (I)V). The return‑instruction in
the next line changes the control‑flow back to the place from where write was
called. This method needs to be part of a header that is included in any codewe
generate. The helper‑method write can be invoked with the two instructions

iload E(x)
invokestatic XXX/XXX/write(I)V

where we first place the variable to be printed on top of the stack and then call
write. The XXX need to be replaced by an appropriate class name (this will be
explained shortly).

8

1 .class public XXX.XXX
2 .super java/lang/Object
3

4 .method public <init>()V
5 aload_0
6 invokenonvirtual java/lang/Object/<init>()V
7 return
8 .end method
9

10 .method public static main([Ljava/lang/String;)V
11 .limit locals 200
12 .limit stack 200
13

14 …here comes the compiled code…
15

16 return
17 .end method

Figure 1: Boilerplate code needed for running generated code.

By generating code for a While‑program, we end up with a list of (JVM as‑
sembly) instructions. Unfortunately, there is a bitmore boilerplate code needed
before these instructions can be run. The complete code is shown in Figure 1.
This boilerplate code is very specific to the JVM. If we target any other virtual
machine or amachine language, thenwewould need to change this code. Lines
4 to 8 in Figure 1 contain a method for object creation in the JVM; this method
is called before the main‑method in Lines 10 to 17. Interesting are the Lines 11
and 12 where we hardwire that the stack of our programs will never be larger
than 200 and that themaximumnumber of variables is also 200. This seem to be
conservative default values that allow is to run some simple While‑programs.
In a real compiler, we would of course need to work harder and find out ap‑
propriate values for the stack and local variables.

To sum up, in Figure 2 is the complete code generated for the slightly non‑
sensical program

x := 1 + 2;
write x

Having this code at our disposal, we need the assembler to translate the gener‑
ated code into JVM bytecode (a class file). This bytecode is understood by the
JVM and can be run by just invoking the java‑program.

9

.class public test.test

.super java/lang/Object

.method public <init>()V
aload_0
invokenonvirtual java/lang/Object/<init>()V
return

.end method

.method public static write(I)V
.limit locals 1
.limit stack 2
getstatic java/lang/System/out Ljava/io/PrintStream;
iload 0
invokevirtual java/io/PrintStream/println(I)V
return

.end method

.method public static main([Ljava/lang/String;)V
.limit locals 200
.limit stack 200
ldc 1
ldc 2
iadd
istore 0
iload 0
invokestatic test/test/write(I)V
return

.end method

Figure 2: Generated code for a test program. This code can be processed by an
Java assembler producing a class‑file, which can be run by the java‑program.

10

Arrays
Maybe a useful addition to theWhile‑language are arrays. This lets us generate
more interesting While‑programs by translating BF*** programs into equiva‑
lent While‑programs. This means we want to support the following three con‑
structions

new arr[15000]
x := 3 + arr[3 + y]
arr[42 * n] := ...

The first one creates a new array with name arr that can hold a given number
of integers. The second is referencing an array inside a arithmetic expression.
Essentially we have to be able to look up the contents of an array at an index.
Similarly we need to be able to update the content of an array (3rd line). The
latter two constructions state that the index to an array can be given by an arith‑
metic expression. For creating a new array we need to generate the following
JVM instructions:

ldc number
newarray int
astore loc_var

First we need to put the dimension of the array onto the stack, then next in‑
struction creates the array and last we need to store the array in a local variable
(like “simple” variables). For looking up an element in an array we can use the
following code

aload loc_var
index_aexp
iaload

This first loads the “pointer” to the array onto the stack. Then we have the
instructions corresponding to the index where we want to look up the array.
The idea is that these instructions will leave a concrete number on the stack,
which is the index. Finally we just need to load the corresponding element
onto the stack.

11

