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Regular Expressions

In programming languages they are often used to
recognise:

symbols, digits
identifiers
numbers (non-leading zeros)
keywords
comments

http://www.regexper.com
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Last Week

Last week I showed you a regular expression
matcher which works provably correct in all cases
(we did not do the proving part though)

matches r s if and only if s ∈ L(r)

by Janusz Brzozowski (1964)
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The Derivative of a Rexp
der c (∅)

def
= ∅

der c (ϵ) def
= ∅

der c (d) def
= if c = d then ϵ else ∅

der c (r1 + r2)
def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

ders [] r def
= r

ders (c :: s) r def
= ders s (der c r)
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To see what is going on, define

Der cA def
= {s | c :: s ∈ A}

For A = {foo, bar,frak} then

Der fA = {oo, rak}
Der bA = {ar}
Der aA = ∅
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The Idea of the Algorithm
If we want to recognise the string abc with regular
expression r then

1 Der a (L(r))

2 Der b (Der a (L(r)))
3 Der c (Der b (Der a (L(r))))

4 finally we test whether the empty string is in this
set

The matching algorithm works similarly, just over
regular expressions instead of sets.
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Input: string abc and regular expression r
1 der a r
2 der b (der a r)
3 der c (der b (der a r))

4 finally check whether the last regular expression
can match the empty string
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We proved already

nullable(r) if and only if [] ∈ L(r)

by induction on the regular expression.

Any Questions?
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We need to prove

L(der c r) = Der c (L(r))

by induction on the regular expression.
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Proofs about Rexps

P holds for ∅, ϵ and c

P holds for r1 + r2 under the assumption that P
already holds for r1 and r2.

P holds for r1 · r2 under the assumption that P
already holds for r1 and r2.

P holds for r∗ under the assumption that P
already holds for r.
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Proofs about Natural
Numbers and Strings

P holds for 0 and
P holds for n+ 1 under the assumption that P
already holds for n

P holds for [] and
P holds for c :: s under the assumption that P
already holds for s

AFL 03, King’s College London – p. 11/32



Languages

A language is a set of strings.

A regular expression specifies a language.

A language is regular iff there exists a regular
expression that recognises all its strings.

not all languages are regular, e.g. anbn is not
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Regular Expressions

r ::= ∅ null
| ϵ empty string / ”” / []
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

How about ranges [a-z], r+ and ∼ r? Do they
increase the set of languages we can recognise?
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Negation of Regular Expr’s

∼ r (everything that r cannot recognise)

L(∼ r) def
= UNIV− L(r)

nullable(∼ r) def
= not (nullable(r))

der c (∼ r) def
= ∼ (der c r)

Used often for recognising comments:

/ · ∗ · (∼ ([a-z]∗ · ∗ · / · [a-z]∗)) · ∗ · /
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Negation

Assume you have an alphabet consisting of the
letters a, b and c only. Find a (basic!) regular
expression that matches all strings except ab and ac!
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Automata
A deterministic finite automaton consists of:
a set of states
one of these states is the start state
some states are accepting states, and
there is transition function
which takes a state as argument and a character and
produces a new state
this function might not be everywhere defined

A(Q, q0,F, δ)

AFL 03, King’s College London – p. 16/32



q0start q1

q2 q3

q4
a a a, b

a
a

b
b

b

b

the start state can be an accepting state
it is possible that there is no accepting state
all states might be accepting (but this does not
necessarily mean all strings are accepted)
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q0start q1

q2 q3

q4
a a a, b

a
a

b
b

b

b

for this automaton δ is the function

(q0, a) → q1 (q1, a) → q4 (q4, a) → q4
(q0, b) → q2 (q1, b) → q2 (q4, b) → q4

…
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Accepting a String
Given

A(Q, q0,F, δ)

you can define

δ̂(q, []) def
= q

δ̂(q, c :: s) def
= δ̂(δ(q, c), s)

Whether a string s is accepted by A?

δ̂(q0, s) ∈ F
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Non-Deterministic
Finite Automata

A non-deterministic finite automaton consists
again of:
a finite set of states
one of these states is the start state
some states are accepting states, and
there is transition relation

(q1, a) → q2
(q1, a) → q3

(q1, ϵ) → q2
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Two NFA Examples

q0start

q1

q2

ϵ

ϵ

a

a

b

r1start

r2

r3
b

a
ϵ a
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Rexp to NFA

∅ start

ϵ start

c start c
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Case r1 · r2
By recursion we are given two automata:

r1 r2

start . . . start . . .

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via ϵ-transitions to the starting state of the second
automaton.
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Case r1 + r2
By recursion we are given two automata:

r1

r2

start

start

start

. . .

. . .

We (1) need to introduce a new starting state and (2) connect
it to the original two starting states.
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Case r∗

By recursion we are given an automaton for r:
r

start

start . . .

Why can’t we just have an epsilon transition from
the accepting states to the starting state?
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Subset Construction
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q0start

q1

q2

ϵ

ϵ

a

a

b

nodes * a b
∅ *

∅ ∅

{0} *

{0, 1, 2} {2}

{1} *

{1} ∅

{2}

* ∅ {2}

{0, 1} *

{0, 1, 2} {2}

{0, 2}

* {0, 1, 2} {2}

{1, 2}

* {1} {2}
s:

{0, 1, 2}

* {0, 1, 2} {2}
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Subset Construction

AFL 03, King’s College London – p. 26/32

q0start

q1

q2

ϵ

ϵ

a

a

b

nodes * a b
∅ * ∅ ∅

{0} * {0, 1, 2} {2}
{1} * {1} ∅
{2} * ∅ {2}

{0, 1} * {0, 1, 2} {2}
{0, 2} * {0, 1, 2} {2}
{1, 2} * {1} {2}

s: {0, 1, 2} * {0, 1, 2} {2}



Regexps and Automata

Regexps NFAs DFAs

minimal
DFAs

Thompson’s
construction

subset
construction

minimisation
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Regular Languages

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Why is every finite set of strings a regular
language?
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DFA to Rexp

q0start q1 q2

a
b

b

a a

b

How to get from a DFA to a regular expression?
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q0start q1 q2

a
b

b

a a

b

q0 = 2 q0 + 3 q1 + 4 q2
q1 = 2 q0 + 3 q1 + 1 q2
q2 = 1 q0 + 5 q1 + 2 q2
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q0start q1 q2

a
b

b

a a

b

q0 = ϵ + q0 b+ q1 b+ q2 b
q1 = q0 a
q2 = q1 a+ q2 a

Arden’s Lemma:

If q = q r+ s then q = s r∗
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Given the function

rev(∅)
def
=∅

rev(ϵ) def
= ϵ

rev(c) def
= c

rev(r1 + r2)
def
= rev(r1) + rev(r2)

rev(r1 · r2)
def
= rev(r2) · rev(r1)

rev(r∗) def
= rev(r)∗

and the set

RevA def
= {s−1 | s ∈ A}

prove whether

L(rev(r)) = Rev(L(r))
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