
Handout 4 (Sulzmann & Lu Algorithm)
So far our algorithm based on derivatives was only able to say yes or no de-
pending on whether a string was matched by regular expression or not. Often
a more interesting question is to find out how a regular expression matched a
string? Answering this question will help us with the problem we are after,
namely tokenising an input string. The algorithm we will be looking at for this
was designed by Sulzmann & Lu in a rather recent paper. A link to it is pro-
vided on KEATS, in case you are interested.1

In order to give an answer for how a regular expression matched a string,
Sulzmann and Lu introduce values. A value will be the output of the algorithm
whenever the regular expression matches the string. If not, an error will be
raised. Since the first phase of the algorithm by Sulzmann & Lu is identical to
the derivative based matcher from the first coursework, the function nullable
will be used to decide whether as string is matched by a regular expression.
If nullable says yes, then values are constructed that reflect how the regular
expression matched the string. The definitions for regular expressions r and
values v is shown next to each other below:

regular expressions
r ::= ∅

| ϵ
| c
| r1 · r2
| r1 + r2

| r∗

values
v ::=

Empty
| Char(c)
| Seq(v1, v2)
| Le f t(v)
| Right(v)
| [v1, . . . vn]

The point is that there is a very strong correspondence between them. There
is no value for the ∅ regular expression, since it does not match any string.
Otherwise there is exactly one value corresponding to each regular expression
with the exception of r1 + r2 where there are two values, namely Le f t(v) and
Right(v) corresponding to the two alternatives. Note that r∗ is associated with
a list of values, one for each copy of r that was needed to match the string. This
means we might also return the empty list [], if no copy was needed.

Graphically the algorithm by Sulzmann & Lu can be represneted by the pic-
ture in Figure 1 where the path from the left to the right involving der/nullable
is the first phase of the algorithm and mkeps/inj, the path from right to left, the
second phase. This picture shows the steps requiredwhen a regular expression,
say r1, matches the string abc. We first build the three derivatives (according
to a, b and c). We then use nullable to find out whether the resulting regular
expression can match the empty string. If yes we call the function mkeps.

Themkeps function calculates a value for howa regular expression hasmatched
the empty string. Its definition is as follows:

1In my humble opinion this is an interesting instance of the research literature: it contains a
very neat idea, but its presentation is rather sloppy. In earlier versions of their paper, students and
I found several rather annoying typos in their examples and definitions.

1

r1 r2
der a

r3
der b

r4
der c

nullable

v4v3
inj c

v2
inj b

v1
inj a

mkeps

Figure 1: The two phases of the algorithm by Sulzmann & Lu.

mkeps(ϵ) def
= Empty

mkeps(r1 + r2)
def
= if nullable(r1)

then Le f t(mkeps(r1))
else Right(mkeps(r2))

mkeps(r1 · r2)
def
= Seq(mkeps(r1), mkeps(r2))

mkeps(r∗) def
= []

There are no cases for ϵ and c, since these regular expression cannot match the
empty string. Note also that in case of alternatives we give preference to the
regular expression on the left-hand side. This will become important later on.

The second phase of the algorithm is organised recursively such that it will
calculate a value for how the derivative regular expression hasmatched a string
whose first character has been chopped off. Now we need a function that re-
verses this “chopping off” for values. The corresponding function is called inj
for injection. This function takes three arguments: the first one is a regular ex-
pression for which we want to calculate the value, the second is the character
we want to inject and the third argument is the value where we will inject the
character. The result of this function is a new value. The definition of inj is as
follows:

inj (c) c Empty def
= Char c

inj (r1 + r2) c Le f t(v) def
= Le f t(inj r1 c v)

inj (r1 + r2) c Right(v) def
= Right(inj r2 c v)

inj (r1 · r2) c Seq(v1, v2)
def
= Seq(inj r1 c v1, v2)

inj (r1 · r2) c Le f t(Seq(v1, v2))
def
= Seq(inj r1 c v1, v2)

inj (r1 · r2) c Right(v) def
= Seq(mkeps(r1), inj r2 c v)

inj (r∗) c Seq(v, vs) def
= inj r c v :: vs

This definition is by recursion on the regular expression and by analysing the
shape of the values. Therefore there are, for example, three cases for sequnece
regular expressions. The last clause for the star regular expression returns a

2

list where the first element is inj r c v and the other elements are vs. That mean
_ :: _ should be read as list cons.

To understand what is going on, it might be best to do some example cal-
culations and compare with Figure 1. For this note that we have not yet dealt
with the need of simplifying regular expressions (this will be a topic on its own
later). Suppose the regular expression is a · (b · c) and the input string is abc.
The derivatives from the first phase are as follows:

r1: a · (b · c)
r2: ϵ · (b · c)
r3: (∅ · (b · c)) + (ϵ · c)
r4: (∅ · (b · c)) + ((∅ · c) + ϵ)

According to the simple algorithm, wewould test whether r4 is nullable, which
in this case it is. This means we can use the function mkeps to calculate a value
for how r4 was able to match the empty string. Remember that this function
gives preference for alternatives on the left-hand side. However there is only
ϵ on the very right-hand side of r4 that matches the empty string. Therefore
mkeps returns the value

v4 : Right(Right(Empty))

Thepoint is that from this valuewe candirectly read offwhichpart of r4 matched
the empty string. Next we have to “inject” the last character, that is c in the run-
ning example, into this value v4 in order to calculate how r3 could havematched
the string c. According to the definition of inj we obtain

v3 : Right(Seq(Empty, Char(c)))

This is the correct result, because r3 needs to use the right-hand alternative, and
then ϵ needs to match the empty string and c needs to match c. Next we need
to inject back the leĴer b into v3. This gives

v2 : Seq(Empty, Seq(Char(b), Char(c)))

Finally we need to inject back the leĴer a into v2 giving the final result

v1 : Seq(Char(a), Seq(Char(b), Char(c)))

This now corresponds to how the regular expression a · (b · c) matched the
string abc.

There are a few auxiliary functions that are of interest in analysing this algo-
rithm. One is called flaĴen, wriĴen |_|, which extracts the string “underlying”
a value. It is defined recursively as

3

|Empty| def
= []

|Char(c)| def
= [c]

|Le f t(v)| def
= |v|

|Right(v)| def
= |v|

|Seq(v1, v2)|
def
= |v1|@ |v2|

|[v1, . . . , vn]|
def
= |v1|@ . . . @ |vn|

UsingflaĴenwe can seewhat is the string behind the values calculated bymkeps
and inj in our running example are:

|v4|: []
|v3|: c
|v2|: bc
|v1|: abc

This indicates that inj indeed is injecting, or adding, back a character into the
value.

Simplification

Generally the matching algorithms based on derivatives do poorly unless the
regular expressions are simplified after each derivatives step. But this is a bit
more involved in algorithm of Sulzmann & Lu. Consider the last derivation
step in our running example

r4 = der c r3 = (∅ · (b · c)) + ((∅ · c) + ϵ)

Simplifying the result would just give us ϵ. Running mkeps on this regular ex-
pression would then provide us with Empty instead of Right(Right(Empty))
that was obtained without the simplification. The problem is we need to recre-
ate this more complicated value, rather than just Empty.

This requires what I call rectification functions. They need to be calculated
whenever a regular expression gets simplified. Rectification functions take a
value as argument and return a (rectified) value. Our simplification rules so far
are

r ·∅ 7→ ∅
∅ · r 7→ ∅
r · ϵ 7→ r
ϵ · r 7→ r
r +∅ 7→ r
∅+ r 7→ r
r + r 7→ r

Applying them to r4 will require several nested simplifications in order end up
with just ϵ.

4

We can implement this by leĴing simp return not just a (simplified) regular
expression, but also a rectification function. Let us consider the alternative case,
say r1 + r2, first. We would first simplify the component regular expressions r1
and r2. This will return simplified versions (if they can be simplified), say r1s
and r2s, but also two rectification functions f1s and f2s. We need to assemble
them in order to obtain a rectified value for r1 + r2. In case r1s simplified to
∅, we would continue the derivative calculation with r2s. The Sulzmann & Lu
algorithm would return a corresponding value, say v2s. But now this needs to
be “rectified” to the value

Right(v2s)

Unfortunately, this is not enough because there might be some simplifications
that happened inside r2 and for which the simplification function retuned also
a rectification function f2s. So in fact we need to apply this one too which gives

Right(f2s(v2s))

So if we want to return this as function, we would need to return

λv. Right(f2s(v))

which is the lambda-calculus notation for a function that expects a value v and
returns everything after the dot where v is replaced by whatever value is given.

Let us package these ideas into a single function (still only considering the
alternative case):

simp(r):
case r = r1 + r2
let (r1s, f1s) = simp(r1)

(r2s, f2s) = simp(r2)

case r1s = ∅: return (r2s, λv. Right(f2s(v)))
case r2s = ∅: return (r1s, λv. Le f t(f1s(v)))
otherwise: return (r1s + r2s, falt(f1s, f2s))

We first recursively call the simlification with r1 and r2. This gives simplified
regular expressions, r1s and r2s, as well as two rectification functions f1s and
f2s. We next need to test whether the simplified regular expressions are∅ so as
tomake further simplifications. In case r1s is∅ thenwe can return r2s (the other
alternative). However we need to now build a rectification function, which as
said above is

λv. Right(f2s(v))

The case where r2s = ∅ is similar. We return r1s but now have to rectify such
that we return

λv. Le f t(f1s(v))

5

Note that in this case we have to apply f1s, not f2s, which is responsible to rec-
tify the inner parts of v. The otherwise-case is slightly interesting. In this case
neither r1s nor r2s are ∅ and no further simplification can be applied. Accord-
ingly, we return r1s + r2s as the simplified regular expression. In principle we
also do not have to do any rectification, because no simplification was done in
this case. But this is actually not true: There might have been simplifications
inside r1s and r2s. We therefore need to take into account the calculated rectifi-
cation functions f1s and f2s. We can do this by defining a rectification function
falt which takes two rectification functions as arguments

falt(f1, f2)
def
=

λv. case v = Le f t(v′): return Le f t(f1(v′))
case v = Right(v′): return Right(f2(v′))

In essence we need to apply in this case the appropriate rectification function
to the inner part of the value v, wherevy v can only be of the form Right(_) or
Le f t(_).

Records and Tokenisation

6

Algorithm by Sulzmann, Lexing

7

