Compilers and Formal Languages

Email: christian.urban at kcl.ac.uk Slides & Progs: KEATS (also homework is there)

What Parsing is Not

Usually parsing does not check semantic correctness, e.g. whether a function is not used before it is defined whether a function has the correct number of arguments or are of correct type whether a variable can be declared twice in a scope

Regular Languages

While regular expressions are very useful for lexing, there is no regular expression that can recognise the language *a nb n* .

$((((())))$) vs. $(((())))$

So we cannot find out with regular expressions whether parentheses are matched or unmatched. Also regular expressions are not recursive, e.g. $(1 + 2) + 3$.

Hierarchy of Languages

all languages

decidable languages

context sensitive languages

context-free languages

regular languages

Time flies like an arrow. Fruit flies like bananas.

CFGs A **context-free grammar** *G* consists of

a finite set of nonterminal symbols (e.g. *A* upper case)

a finite set terminal symbols or tokens (lower case) a start symbol (which must be a nonterminal) a set of rules

 $A := r$ *hs*

where *rhs* are sequences involving terminals and nonterminals, including the empty sequence *ϵ*.

CFGs A **context-free grammar** *G* consists of

a finite set of nonterminal symbols (e.g. *A* upper case)

a finite set terminal symbols or tokens (lower case) a start symbol (which must be a nonterminal) a set of rules

 $A := r$ *hs*

where *rhs* are sequences involving terminals and nonterminals, including the empty sequence *ϵ*.

We also allow rules

 $A ::= r h s_1 | r h s_2 | \ldots$

Palindromes

A grammar for palindromes over the alphabet *{a*, *b}*:

> $S ::= a \cdot S \cdot a$ $S ::= b \cdot S \cdot b$ $S ::= a$ $S ::= b$ $S ::= \epsilon$

Palindromes

A grammar for palindromes over the alphabet $\{a, b\}$:

$$
S ::= a \cdot S \cdot a \mid b \cdot S \cdot b \mid a \mid b \mid \epsilon
$$

Arithmetic Expressions

$$
E ::= 0 | 1 | 2 | \dots | 9
$$

$$
| E \cdot + \cdot E
$$

$$
| E \cdot - \cdot E
$$

$$
| E \cdot * \cdot E
$$

$$
| (\cdot E \cdot)
$$

Arithmetic Expressions

$$
E ::= 0 | 1 | 2 | \dots | 9
$$

$$
|E \cdot + \cdot E
$$

$$
|E \cdot - \cdot E
$$

$$
|E \cdot * \cdot E
$$

$$
| (\cdot E \cdot)
$$

 $1 + 2 * 3 + 4$

A CFG Derivation

Begin with a string containing only the start symbol, say *S*

Replace any nonterminal X in the string by the right-hand side of some production *X* ::= *rhs*

³ Repeat 2 until there are no nonterminals left

 $S \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots \rightarrow \ldots$

Example Derivation

$$
S ::= \epsilon \mid a \cdot S \cdot a \mid b \cdot S \cdot b
$$

 $S \rightarrow aSa$ *→ abSba → abaSaba → abaaba*

Example Derivation

$$
E ::= 0 | 1 | 2 | \dots | 9
$$

\n
$$
| E \cdot + \cdot E
$$

\n
$$
| E \cdot - \cdot E
$$

\n
$$
| E \cdot * \cdot E
$$

\n
$$
| (\cdot E \cdot)
$$

 $E \rightarrow E * E$ \rightarrow *E* + **E** $*$ **E** *→ E* + *E ∗ E* + *E* \rightarrow ⁺ 1 + 2 $*$ 3 + 4

Example Derivation

$$
E ::= 0 | 1 | 2 | \dots | 9
$$

\n
$$
| E \cdot + \cdot E
$$

\n
$$
| E \cdot - \cdot E
$$

\n
$$
| E \cdot * \cdot E
$$

\n
$$
| (\cdot E \cdot)
$$

 $E \rightarrow E \ast E$ $E \rightarrow E + E$ *→ E* + *E ∗ E → E* + *E* + *E → E* + *E ∗ E* + *E → E* + *E ∗ E* + *E →*⁺ 1 + 2 *∗* 3 + 4 *→*⁺ 1 + 2 *∗* 3 + 4

Language of a CFG

Let *G* be a context-free grammar with start symbol *S*. Then the language $L(G)$ is:

 ${c_1 \dots c_n \mid \forall i. \ c_i \in T \land S \rightarrow^* c_1 \dots c_n}$

Language of a CFG

Let *G* be a context-free grammar with start symbol *S*. Then the language *L*(*G*) is:

 ${c_1 \dots c_n \mid \forall i. \ c_i \in T \land S \rightarrow^* c_1 \dots c_n}$

Terminals, because there are no rules for replacing them.

Once generated, terminals are "permanent".

Terminals ought to be tokens of the language (but can also be strings).

Parse Trees

Arithmetic Expressions

 $E := 0.9$ $|E \cdot + \cdot E|$ *| E · − · E | E · ∗ · E* $|\cdot(\cdot E \cdot)$

Arithmetic Expressions

 $E ::= 0.9$ $|E \cdot + \cdot E|$ *| E · − · E | E · ∗ · E* $| (\cdot E \cdot)$

A CFG is **left-recursive** if it has a nonterminal *E* such that $E \rightarrow^+ E \cdot \ldots$

Ambiguous Grammars

A grammar is **ambiguous** if there is a string that has at least two different parse trees.

 $F ::= 0...9$ $|E \cdot + \cdot E|$ $|E \cdot - \cdot E|$ *| E · ∗ · E* $| (\cdot E \cdot)$

 $1 + 2 * 3 + 4$

'Dangling' Else

Another ambiguous grammar:

$$
E \rightarrow \text{if } E \text{ then } E
$$

if *E* then *E* else *E*

if a then if x then y else c

CYK Algorithm

Suppose the grammar:

- S ::= $N \cdot P$
- P ::= $V \cdot N$
- N ::= $N \cdot N$
- *N* ::= students *|* Jeff *|* geometry *|* trains
- $V :=$ trains

Jeff trains geometry students

CYK Algorithm

- S ::= $N \cdot P$
- P ::= $V \cdot N$
- N ::= $N \cdot N$
- *N* ::= students *|* Jeff

| geometry *|* trains

 V $:=$ trains

Chomsky Normal Form

A grammar for palindromes over the alphabet *{a*, *b}*:

$$
S ::= a \cdot S \cdot a \mid b \cdot S \cdot b \mid a \cdot a \mid b \cdot b \mid a \mid b
$$

CYK Algorithm

fastest possible algorithm for recognition problem runtime is $O(n^3)$

grammars need to be transformed into CNF

"The C++ grammar is ambiguous, contextdependent and potentially requires infinite lookahead to resolve some ambiguities."

from the PhD thesis by Willink (2001)

```
int(x), y, *const z;
int(x), y, new int;
```
Context Sensitive Grammars

It is much harder to find out whether a string is parsed by a context sensitive grammar:

> $S := bSAA \mid \epsilon$ $A := a$ $hA ::= Ah$

Context Sensitive Grammars

It is much harder to find out whether a string is parsed by a context sensitive grammar:

> S ::= $bSAA \mid \epsilon$ A ::= a $$ *S →* . . . *→*? *ababaa*

```
For CW2, please include '\' as a symbol in
strings, because the collatz program contains
      write "\n";
```
val (r1s, $f1s$) = simp(r1) val (r2s, $f2s$) = simp(r2) how are the first rectification functions f1s and f2s made? could you maybe show an example?