
Coursework 3 (Strand 1)
This coursework is worth 5% and is due on 26 November at 16:00. You are
asked to implement a parser for the WHILE language and also an interpreter.
You should use the lexer from the previous coursework for the parser.

Question 1 (marked with 1%)
Design a grammar for the WHILE language and give the grammar rules. The
main categories of non-terminal should be:

• arithmetic expressions (with the operations from the previous course-
work, such as +, * and so on)

• boolean expressions (such as <, != and so on)

• single statements (such as skip, assignments, ifs, while-loops and so on)

• compound statements separated by semicolons

• blocks which are enclosed in curly parentheses

Question 2 (marked with 2%)
You should implement a parser for the WHILE language using parser com-
binators. Be careful that the parser takes as input a stream, or list, of tokens
generated by the tokenizer from the previous coursework. For this you might
filter out whitespaces and comments. Your parser should be able to handle the
WHILE programs in Figures 2 and 3. In addition give the parse tree for the
statement:

if (a < b) then skip else a := a * b + 1

A (possibly incomplete) datatype for parse trees in Scala would look as in Fig-
ure 1.

Question 3 (marked with 2%)
Implement an interpreter for theWHILE language you designed and parsed in
Question 1 and 2. This interpreter should take as input a parse tree. However
be careful because programs contain variables and variable assignments. This
means you need to maintain a kind of memory, or environment, where you
can look up a value of a variable and also store a new value if it is assigned.
Therefore an evaluation function (interpreter) needs to look roughly as follows

eval_stmt(stmt, env)

where stmt corresponds to the parse tree of the program and env is an environ-
ment acting as a store for variable values. Consider the Fibonacci program in

1



1 abstract class Stmt
2 abstract class AExp
3 abstract class BExp
4

5 type Block = List[Stmt]
6

7 case object Skip extends Stmt
8 case class If(a: BExp, bl1: Block, bl2: Block) extends Stmt
9 case class While(b: BExp, bl: Block) extends Stmt
10 case class Assign(s: String, a: AExp) extends Stmt
11

12 case class Var(s: String) extends AExp
13 case class Num(i: Int) extends AExp
14 case class Aop(o: String, a1: AExp, a2: AExp) extends AExp
15

16 case object True extends BExp
17 case object False extends BExp
18 case class Bop(o: String, a1: AExp, a2: AExp) extends BExp

Figure 1: The datatype for parse trees in Scala.

Figure 2. At the beginning of the program this store will be empty, but needs
to be extended in line 3 and 4 where the variables minus1 and minus2 are as-
signed values. These values need to be reassigned in lines 7 and 8. The pro-
gram should be interpreted according to straightforward rules: for example an
if-statement will “run” the if-branch if the boolean evaluates to true, otherwise
the else-branch. Loops should be run as long as the boolean is true.

Give some time measurements for your interpreter and the loop program
in Figure 3. For example how long does your interpreter take when start is
initialised with 100, 500 and so on. How far can you scale this value if you are
willing to wait, say 1 Minute.

2



1 write "Fib";
2 read n;
3 minus1 := 0;
4 minus2 := 1;
5 while n > 0 do {
6 temp := minus2;
7 minus2 := minus1 + minus2;
8 minus1 := temp;
9 n := n - 1
10 };
11 write "Result";
12 write minus2

Figure 2: Fibonacci program in the WHILE language.

1 start := 1000;
2 x := start;
3 y := start;
4 z := start;
5 while 0 < x do {
6 while 0 < y do {
7 while 0 < z do { z := z - 1 };
8 z := start;
9 y := y - 1
10 };
11 y := start;
12 x := x - 1
13 }

Figure 3: The three-nested-loops program in the WHILE language. Usually
used for timing measurements.

3


