
Coursework 4 (Strand 1)
This coursework is worth 6% and is due on 16 December at 16:00. You are
asked to implement a compiler for theWHILE language that targets the assem-
bler language provided by Jasmin or Krakatau (both have very similar syntax).
You can do the implementation in any programming language you like, but
you need to submit the source code with which you answered the questions,
otherwise a mark of 0% will be awarded. You should use the lexer and parser
from the previous courseworks.

Disclaimer
It should be understood that the work you submit represents your own effort.
You have not copied from anyone else. An exception is the Scala code I showed
during the lectures, which you can use. You can also use your own code from
the CW 1, CW 2 and CW 3.

Jasmin Assembler
The Jasmin assembler is available from

http://jasmin.sourceforge.net

There is a user guide for Jasmin

http://jasmin.sourceforge.net/guide.html

and also a description of some of the instructions that the JVM understands

http://jasmin.sourceforge.net/instructions.html

If you generated a correct assembler file for Jasmin, for example loops.j, you
can use

java -jar jasmin-2.4/jasmin.jar loops.j

in order to translate it into Java Byte Code. The resulting class file can be run
with

java loops

where you might need to give the correct path to the class file. For example:

java -cp . loops/loops

There are also other resources about Jasmin on the Internet, for example

http://www.ceng.metu.edu.tr/courses/ceng444/link/f3jasmintutorial.html

and

http://www.csc.villanova.edu/~tway/courses/csc8505/s2011/handouts/JVM%
20and%20Jasmin.pdf

1

http://jasmin.sourceforge.net
http://jasmin.sourceforge.net/guide.html
http://jasmin.sourceforge.net/instructions.html
http://www.ceng.metu.edu.tr/courses/ceng444/link/f3jasmintutorial.html
http://www.csc.villanova.edu/~tway/courses/csc8505/s2011/handouts/JVM%20and%20Jasmin.pdf
http://www.csc.villanova.edu/~tway/courses/csc8505/s2011/handouts/JVM%20and%20Jasmin.pdf


write "Fib";
read n;
minus1 := 0;
minus2 := 1;
while n > 0 do {

temp := minus2;
minus2 := minus1 + minus2;
minus1 := temp;
n := n - 1

};
write "Result";
write minus2

Figure 1: The Fibonacci program in the WHILE language.

Krakatau Assembler
The Krakatau assembler is available from

https://github.com/Storyyeller/Krakatau

This assembler requires Python and a package called ply available from

https://pypi.python.org/pypi/ply

This assembler is largely compatible with the Jasmin syntax—that means for
the files we are concerned with here, it understands the same input syntax (no
changes to your compiler need to be made; ok maybe some small syntactic
adjustments are needed). You can generate Java Byte Code by using

python Krakatau-master/assemble.py loops.j

where you may have to adapt the directory where Krakatau is installed (I just
downloaded the zip file from Github and Krakatau-master was the directory
where it was installed). Again the resulting class-file you can run with java.

Question 1
You need to lex and parseWHILE programs, and then generate Java Byte Code
instructions for the Jasmin assembler (or Krakatau assembler). As solution you
need to submit the assembler instructions for the Fibonacci and Factorial pro-
grams. Both should be so modified that a user can input on the console which
Fibonacci number andwhich Factorial should be calculated. The Fibonacci pro-
gram is given in Figure 1. You can write your own program for calculating fac-
torials. Submit your assembler code as a file that can be run, not as PDF-text.

2

https://github.com/Storyyeller/Krakatau
https://pypi.python.org/pypi/ply


Question 2
Extend the syntax of your language so that it contains also for-loops, like

for Id := AExp upto AExp do Block

The intendedmeaning is to first assign the variable Id the value of the first arith-
metic expression, test wether this value is less or equal than the value of the sec-
ond arithmetic expression. If yes, go through the loop, and at the end increase
the value of the loop variable by 1 and start again with the test. If no, leave the
loop. For example the following instance of a for-loop is supposed to print out
the numbers 2, 3, 4.

for i := 2 upto 4 do {
write i

}

There are two ways how this can be implemented: one is to adapt the code
generation part of the compiler and generate specific code for for-loops; the
other is to translate the abstract syntax tree of for-loops into an abstract syntax
tree using existing language constructs. For example the loop above could be
translated to the following while-loop:

i := 2;
while (i <= 4) do {

write i;
i := i + 1;

}

Question 3 (marked with 1%)
In this question you are supposed to give the assembler instructions for the
program

for i := 1 upto 10 do {
for i := 1 upto 10 do {

write i
}

}

Note that in this program the variable i is used twice. You need to make a
decision how it should be compiled? Explain your decision and indicate what
this program would print out.

3



Further Information
The Java infrastructure unfortunately does not contain an assembler out-of-
the-box (therefore you need to download the additional package Jasmin or
Krakatau—see above). But it does contain a disassembler, called javap. A dis-
sembler does the “opposite” of an assembler: it generates readable assembler
code from Java Byte Code. Have a look at the following example: Compile
using the usual Java compiler the simple Hello World program below:

class HelloWorld {
public static void main(String[] args) {

System.out.println("Hello World!");
}

}

You can use the command

javap -v HelloWorld

to see the assembler instructions of the Java Byte Code that has been generated
for this program. You can compare this with the code generated for the Scala
version of Hello World.

object HelloWorld {
def main(args: Array[String]) {

println("Hello World!")
}

}

Library Functions
You need to generate code for the commands write and read. This will require
the addition of some “library” functions to your generated code. The first com-
mand even needs two versions, because you need to write out an integer and
string. The Java byte codewill need two separate functions for this. For writing
out an integer, you can use the assembler code

.method public static write(I)V
.limit locals 1
.limit stack 2
getstatic java/lang/System/out Ljava/io/PrintStream;
iload 0
invokevirtual java/io/PrintStream/println(I)V
return

.end method

4



This functionwill invoke Java’s println function for integers. Then if you need
to generate code for write xwhere x is an integer variable, you can generate

iload n
invokestatic XXX/XXX/write(I)V

where n is the index where the value of the variable x is stored. The XXX/XXX
needs to be replaced with the class name which you use to generate the code
(for example fib/fib in case of the Fibonacci numbers).

Writing out a string is similar. The corresponding library function uses
strings instead of integers:

.method public static writes(Ljava/lang/String;)V
.limit stack 2
.limit locals 1
getstatic java/lang/System/out Ljava/io/PrintStream;
aload 0
invokevirtual java/io/PrintStream/println(Ljava/lang/String;)V
return

.end method

The code that needs to be generated for write "some_string" commands is

ldc "some_string"
invokestatic XXX/XXX/writes(Ljava/lang/String;)V

Again you need to adjust the XXX/XXX part in each call.
The code for read is more complicated. The reason is that inpuĴing a string

will need to be transformed into an integer. The code in Figure ?? does this. It
can be called with

invokestatic XXX/XXX/read()I
istore n

where n is the index of the variable that requires an input. If you use Windows
you need to take into account that a “return” is not just a newline, '\10', but
'\13\10'. This means you need to change line 12 in Figure ?? to ldc 13.

5



1 .method public static read()I
2 .limit locals 10
3 .limit stack 10
4

5 ldc 0
6 istore 1 ; this will hold our final integer
7 Label1:
8 getstatic java/lang/System/in Ljava/io/InputStream;
9 invokevirtual java/io/InputStream/read()I
10 istore 2
11 iload 2
12 ldc 10 ; the newline delimiter
13 isub
14 ifeq Label2
15 iload 2
16 ldc 32 ; the space delimiter
17 isub
18 ifeq Label2
19 iload 2
20 ldc 48 ; we have our digit in ASCII, have to subtract it from 48
21 isub
22 ldc 10
23 iload 1
24 imul
25 iadd
26 istore 1
27 goto Label1
28 Label2:
29 ;when we come here we have our integer computed in Local Variable 1
30 iload 1
31 ireturn
32 .end method

Figure 2: Assembler code for reading an integer from the console.

6


