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Parser Combinators

One of the simplest ways to implement a parser, see
https://vimeo.com/142341803 (by Haoyi Li)

• build-in library in Scala
• fastparse (2) library by Haoyi Li; is part of Ammonite
• possible exponential runtime behaviour
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Parser Combinators

Parser combinators:

list of tokens︸ ︷︷ ︸
input

⇒ set of (parsed input, unparsed input)︸ ︷︷ ︸
output

atomic parsers
sequencing
alternative
semantic action (map-parser)
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Atomic parsers, for example, number tokens

Num(123) :: rest ⇒ {(Num(123), rest)}

you consume one or more token from the
input (stream)
also works for characters and strings
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Alternative parser (code p || q)

apply p and also q; then combine the outputs

p(input) ∪ q(input)
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Sequence parser (code p ∼ q)

apply first p producing a set of pairs
then apply q to the unparsed part
then combine the results:

((output1, output2), unparsed part)

{((o1, o2), u2) |
(o1, u1) ∈ p(input)∧
(o2, u2) ∈ q(u1)}
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Map-parser (code p.map(f) )

apply p producing a set of pairs
then apply the function f to each first component

{(f(o1), u1) | (o1, u1) ∈ p(input)}

f is the semantic action (“what to do with the parsed
input”)
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Semantic Actions
Addition

T ∼ + ∼ E ⇒ f ((x, y), z) ⇒ x+ z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T ⇒ f ((x, y), z) ⇒ x ∗ z

Parenthesis

( ∼ E ∼ ) ⇒ f ((x, y), z) ⇒ y
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Types of Parsers
Sequencing: if p returns results of type T, and q
results of type S, then p ∼ q returns results of type

T× S

Alternative: if p returns results of type T then q
must also have results of type T, and p || q returns
results of type

T
Semantic Action: if p returns results of type T and f
is a function from T to S, then p ⇒ f returns results
of type

S
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Input Types of Parsers

input: token list
output: set of (output_type, token list)

actually it can be any input type as long as it is a kind
of sequence (for example a string)
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Scannerless Parsers

input: string
output: set of (output_type, string)

but using lexers is better because whitespaces or
comments can be filtered out; then input is a
sequence of tokens
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Successful Parses

input: string
output: set of (output_type, string)

a parse is successful whenever the input has been
fully “consumed” (that is the second component is
empty)
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Abstract Parser Class

abstract class Parser[I, T] {
def parse(ts: I): Set[(T, I)]

def parse_all(ts: I) : Set[T] =
for ((head, tail) <‐ parse(ts);

if (tail.isEmpty)) yield head
}
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class AltParser[I, T](p: => Parser[I, T],
q: => Parser[I, T])

extends Parser[I, T] {
def parse(sb: I) = p.parse(sb) ++ q.parse(sb)

}

class SeqParser[I, T, S](p: => Parser[I, T],
q: => Parser[I, S])

extends Parser[I, (T, S)] {
def parse(sb: I) =

for ((head1, tail1) <‐ p.parse(sb);
(head2, tail2) <‐ q.parse(tail1))

yield ((head1, head2), tail2)
}

class FunParser[I, T, S](p: => Parser[I, T], f: T => S)
extends Parser[I, S] {

def parse(sb: I) =
for ((head, tail) <‐ p.parse(sb))

yield (f(head), tail)
} CFL 06, King’s College London – p. 14/50



TwoGrammars
Which languages are recognised by the following
two grammars?

S → 1 · S · S
| ϵ

U → 1 · U
| ϵ
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Ambiguous Grammars
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While-Language
Stmt ::= skip

| Id := AExp

| if BExp then Block else Block

| while BExp do Block

Stmts ::= Stmt ; Stmts

| Stmt

Block ::= { Stmts }

| Stmt

AExp ::= …

BExp ::= …
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An Interpreter

{
x := 5;
y := x ∗ 3;
y := x ∗ 4;
x := u ∗ 3

}

the interpreter has to record the value of x before
assigning a value to y

eval(stmt, env)
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Interpreter

eval(n, E) def
= n

eval(x, E) def
= E(x) lookup x in E

eval(a1 + a2, E)
def
= eval(a1, E) + eval(a2, E)

eval(a1 − a2, E)
def
= eval(a1, E)− eval(a2, E)

eval(a1 ∗ a2, E)
def
= eval(a1, E) ∗ eval(a2, E)

eval(a1 = a2, E)
def
= eval(a1, E) = eval(a2, E)

eval(a1 != a2, E)
def
= ¬(eval(a1, E) = eval(a2, E))

eval(a1 < a2, E)
def
= eval(a1, E) < eval(a2, E)
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Interpreter (2)
eval(skip, E) def

= E
eval(x := a, E) def

= E(x 7→ eval(a, E))
eval(if b then cs1 else cs2, E)

def
=

if eval(b, E) then eval(cs1, E)
else eval(cs2, E)

eval(while b do cs, E) def
=

if eval(b, E)
then eval(while b do cs, eval(cs, E))
else E

eval(write x, E) def
= { println(E(x)) ; E }
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Test Program

??
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Interpreted Code
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Java Virtual Machine

introduced in 1995
is a stack-based VM (like Postscript, CLR of .Net)
contains a JIT compiler
many languages take advantage of JVM’s
infrastructure (JRE)
is garbage collected⇒ no buffer overflows
some languages compile to the JVM: Scala,
Clojure…
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Starting Symbol

S ::= A · S · B | B · S · A | ϵ

A ::= a | ϵ

B ::= b

TODO: Testcases for math expressions
https://github.com/ArashPartow/
math‐parser‐benchmark‐project
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Hierarchy of Languages
Recall that languages are sets of strings.

all languages

decidable languages

context sensitive languages
context-free languages

regular languages
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Parser Combinators

Atomic parsers, for example

1 :: rest ⇒ {(1, rest)}

you consume one or more tokens from the
input (stream)
also works for characters and strings
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Alternative parser (code p | q)

apply p and also q; then combine the outputs

p(input) ∪ q(input)
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Sequence parser (code p ∼ q)

apply first p producing a set of pairs
then apply q to the unparsed parts
then combine the results:

((output1, output2), unparsed part)

{((o1, o2), u2) |
(o1, u1) ∈ p(input)∧
(o2, u2) ∈ q(u1)}
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Function parser (code p ⇒ f )

apply p producing a set of pairs
then apply the function f to each first component

{(f(o1), u1) | (o1, u1) ∈ p(input)}
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Types of Parsers
Sequencing: if p returns results of type T, and q
results of type S, then p ∼ q returns results of type

T× S

Alternative: if p returns results of type T then q
must also have results of type T, and p | q returns
results of type

T
Semantic Action: if p returns results of type T and f
is a function from T to S, then p ⇒ f returns results
of type

S
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Arithmetic Expressions
A grammar for arithmetic expressions and numbers:

E ::= E ·+ · E | E · ∗ · E | (·E·) | N
N ::= N · N | 0 | 1 | . . . | 9

Unfortunately it is left-recursive (and ambiguous).

A problem for recursive descent parsers (e.g. parser
combinators).
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Numbers

N ::= N · N | 0 | 1 | . . . | 9

A non-left-recursive, non-ambiguous grammar for
numbers:

N ::= 0 · N | 1 · N | . . . | 0 | 1 | . . . | 9
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Removing Left-Recursion
The rule for numbers is directly left-recursive:

N ::= N · N | 0 | 1 (. . .)

Translate

N ::= N · α
| β ⇒

N ::= β · N′

N′ ::= α · N′

| ϵ

Which means in this case:

N → 0 · N′ | 1 · N′

N′ → N · N′ | ϵ
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Chomsky Normal Form

All rules must be of the form

A ::= a

or

A ::= B · C

No rule can contain ϵ.
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ϵ-Removal
1 If A ::= α · B · β and B ::= ϵ are in the grammar,

then add A ::= α · β (iterate if necessary).
2 Throw out all B ::= ϵ.

N ::= 0 · N′ | 1 · N′

N′ ::= N · N′ | ϵ
N ::= 0 · N′ | 1 · N′ | 0 | 1
N′ ::= N · N′ | N | ϵ

N ::= 0 · N′ | 1 · N′ | 0 | 1
N′ ::= N · N′ | N

N ::= 0 · N | 1 · N | 0 | 1
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CYKAlgorithm

If grammar is in Chomsky normalform …

S ::= N · P
P ::= V · N
N ::= N · N
N ::= students | Jeff | geometry | trains
V ::= trains

Jeff trains geometry students
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CYKAlgorithm

fastest possible algorithm for recognition problem
runtime is O(n3)

grammars need to be transformed into CNF
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TheGoal of this Course

Write a Compiler

lexer parser code gen

We have a lexer and a parser…
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Stmt ::= skip
| Id := AExp
| if BExp then Block else Block
| while BExp do Block
| read Id
| write Id
| write String

Stmts ::= Stmt ; Stmts
| Stmt

Block ::= { Stmts }
| Stmt

AExp ::= …
BExp ::= …
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??
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An Interpreter

{
x := 5;
y := x ∗ 3;
y := x ∗ 4;
x := u ∗ 3

}

the interpreter has to record the value of x before
assigning a value to y

eval(stmt, env)
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An Interpreter

eval(n, E) def
= n

eval(x, E) def
= E(x) lookup x in E

eval(a1 + a2, E)
def
= eval(a1, E) + eval(a2, E)

eval(a1 − a2, E)
def
= eval(a1, E)− eval(a2, E)

eval(a1 ∗ a2, E)
def
= eval(a1, E) ∗ eval(a2, E)

eval(a1 = a2, E)
def
= eval(a1, E) = eval(a2, E)

eval(a1 != a2, E)
def
= ¬(eval(a1, E) = eval(a2, E))

eval(a1 < a2, E)
def
= eval(a1, E) < eval(a2, E)
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An Interpreter (2)
eval(skip, E) def

= E
eval(x := a, E) def

= E(x 7→ eval(a, E))
eval(if b then cs1 else cs2, E)

def
=

if eval(b, E) then eval(cs1, E)
else eval(cs2, E)

eval(while b do cs, E) def
=

if eval(b, E)
then eval(while b do cs, eval(cs, E))
else E

eval(write x, E) def
= { println(E(x)) ; E }
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Test Program

??
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Interpreted Code
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Java Virtual Machine

introduced in 1995
is a stack-based VM (like Postscript, CLR of .Net)
contains a JIT compiler

From the Cradle to the Holy Graal - the JDK Story
https://www.youtube.com/watch?v=h419kfbLhUI

is garbage collected⇒ no buffer overflows
some languages compile to the JVM: Scala,
Clojure…
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LLVM

LLVM started by academics in 2000 (University of
Illinois in Urbana-Champaign)
suite of compiler tools
SSA-based intermediate language
no need to allocate registers
source languages: C, C++, Rust, Go, Swift
target CPUs: x86, ARM, PowerPC, …
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