
Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk
Slides & Progs: KEATS (also homework is there)

1 Introduction, Languages 6 While-Language
2 Regular Expressions, Derivatives 7 Compilation, JVM
3 Automata, Regular Languages 8 Compiling Functional Languages
4 Lexing, Tokenising 9 Optimisations
5 Grammars, Parsing 10 LLVM

CFL 06, King’s College London – p. 1/50

Parser Combinators

One of the simplest ways to implement a parser, see
https://vimeo.com/142341803 (by Haoyi Li)

• build-in library in Scala
• fastparse (2) library by Haoyi Li; is part of Ammonite
• possible exponential runtime behaviour

CFL 06, King’s College London – p. 2/50

https://vimeo.com/142341803

Parser Combinators

Parser combinators:

list of tokens︸ ︷︷ ︸
input

⇒ set of (parsed input, unparsed input)︸ ︷︷ ︸
output

atomic parsers
sequencing
alternative
semantic action (map-parser)

CFL 06, King’s College London – p. 3/50

Atomic parsers, for example, number tokens

Num(123) :: rest ⇒ {(Num(123), rest)}

you consume one or more token from the
input (stream)
also works for characters and strings

CFL 06, King’s College London – p. 4/50

Alternative parser (code p || q)

apply p and also q; then combine the outputs

p(input) ∪ q(input)

CFL 06, King’s College London – p. 5/50

Sequence parser (code p ∼ q)

apply first p producing a set of pairs
then apply q to the unparsed part
then combine the results:

((output1, output2), unparsed part)

{((o1, o2), u2) |
(o1, u1) ∈ p(input)∧
(o2, u2) ∈ q(u1)}

CFL 06, King’s College London – p. 6/50

Map-parser (code p.map(f))

apply p producing a set of pairs
then apply the function f to each first component

{(f(o1), u1) | (o1, u1) ∈ p(input)}

f is the semantic action (“what to do with the parsed
input”)

CFL 06, King’s College London – p. 7/50

Map-parser (code p.map(f))

apply p producing a set of pairs
then apply the function f to each first component

{(f(o1), u1) | (o1, u1) ∈ p(input)}

f is the semantic action (“what to do with the parsed
input”)

CFL 06, King’s College London – p. 7/50

Semantic Actions
Addition

T ∼ + ∼ E ⇒ f ((x, y), z) ⇒ x+ z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T ⇒ f ((x, y), z) ⇒ x ∗ z

Parenthesis

(∼ E ∼) ⇒ f ((x, y), z) ⇒ y

CFL 06, King’s College London – p. 8/50

Semantic Actions
Addition

T ∼ + ∼ E ⇒ f ((x, y), z) ⇒ x+ z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T ⇒ f ((x, y), z) ⇒ x ∗ z

Parenthesis

(∼ E ∼) ⇒ f ((x, y), z) ⇒ y

CFL 06, King’s College London – p. 8/50

Semantic Actions
Addition

T ∼ + ∼ E ⇒ f ((x, y), z) ⇒ x+ z︸ ︷︷ ︸
semantic action

Multiplication

F ∼ ∗ ∼ T ⇒ f ((x, y), z) ⇒ x ∗ z

Parenthesis

(∼ E ∼) ⇒ f ((x, y), z) ⇒ y

CFL 06, King’s College London – p. 8/50

Types of Parsers
Sequencing: if p returns results of type T, and q
results of type S, then p ∼ q returns results of type

T× S

Alternative: if p returns results of type T then q
must also have results of type T, and p || q returns
results of type

T
Semantic Action: if p returns results of type T and f
is a function from T to S, then p ⇒ f returns results
of type

S

CFL 06, King’s College London – p. 9/50

Types of Parsers
Sequencing: if p returns results of type T, and q
results of type S, then p ∼ q returns results of type

T× S
Alternative: if p returns results of type T then q
must also have results of type T, and p || q returns
results of type

T

Semantic Action: if p returns results of type T and f
is a function from T to S, then p ⇒ f returns results
of type

S

CFL 06, King’s College London – p. 9/50

Types of Parsers
Sequencing: if p returns results of type T, and q
results of type S, then p ∼ q returns results of type

T× S
Alternative: if p returns results of type T then q
must also have results of type T, and p || q returns
results of type

T
Semantic Action: if p returns results of type T and f
is a function from T to S, then p ⇒ f returns results
of type

S
CFL 06, King’s College London – p. 9/50

Input Types of Parsers

input: token list
output: set of (output_type, token list)

actually it can be any input type as long as it is a kind
of sequence (for example a string)

CFL 06, King’s College London – p. 10/50

Input Types of Parsers

input: token list
output: set of (output_type, token list)

actually it can be any input type as long as it is a kind
of sequence (for example a string)

CFL 06, King’s College London – p. 10/50

Scannerless Parsers

input: string
output: set of (output_type, string)

but using lexers is better because whitespaces or
comments can be filtered out; then input is a
sequence of tokens

CFL 06, King’s College London – p. 11/50

Successful Parses

input: string
output: set of (output_type, string)

a parse is successful whenever the input has been
fully “consumed” (that is the second component is
empty)

CFL 06, King’s College London – p. 12/50

Abstract Parser Class

abstract class Parser[I, T] {
def parse(ts: I): Set[(T, I)]

def parse_all(ts: I) : Set[T] =
for ((head, tail) <‐ parse(ts);

if (tail.isEmpty)) yield head
}

CFL 06, King’s College London – p. 13/50

class AltParser[I, T](p: => Parser[I, T],
q: => Parser[I, T])

extends Parser[I, T] {
def parse(sb: I) = p.parse(sb) ++ q.parse(sb)

}

class SeqParser[I, T, S](p: => Parser[I, T],
q: => Parser[I, S])

extends Parser[I, (T, S)] {
def parse(sb: I) =

for ((head1, tail1) <‐ p.parse(sb);
(head2, tail2) <‐ q.parse(tail1))

yield ((head1, head2), tail2)
}

class FunParser[I, T, S](p: => Parser[I, T], f: T => S)
extends Parser[I, S] {

def parse(sb: I) =
for ((head, tail) <‐ p.parse(sb))

yield (f(head), tail)
} CFL 06, King’s College London – p. 14/50

TwoGrammars
Which languages are recognised by the following
two grammars?

S → 1 · S · S
| ϵ

U → 1 · U
| ϵ

CFL 06, King’s College London – p. 15/50

Ambiguous Grammars

100 200 300 400 500 600 700 800 900 1000

5

10

15

20

25

30

1s

tim
e
in

se
cs

unambiguous

CFL 06, King’s College London – p. 16/50

Ambiguous Grammars

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

1s

tim
e
in

se
cs

unambiguous
ambiguous

CFL 06, King’s College London – p. 16/50

While-Language
Stmt ::= skip

| Id := AExp

| if BExp then Block else Block

| while BExp do Block

Stmts ::= Stmt ; Stmts

| Stmt

Block ::= { Stmts }

| Stmt

AExp ::= …

BExp ::= …
CFL 06, King’s College London – p. 17/50

An Interpreter

{
x := 5;
y := x ∗ 3;
y := x ∗ 4;
x := u ∗ 3

}

the interpreter has to record the value of x before
assigning a value to y

eval(stmt, env)

CFL 06, King’s College London – p. 18/50

An Interpreter

{
x := 5;
y := x ∗ 3;
y := x ∗ 4;
x := u ∗ 3

}

the interpreter has to record the value of x before
assigning a value to y
eval(stmt, env)

CFL 06, King’s College London – p. 18/50

Interpreter

eval(n, E) def
= n

eval(x, E) def
= E(x) lookup x in E

eval(a1 + a2, E)
def
= eval(a1, E) + eval(a2, E)

eval(a1 − a2, E)
def
= eval(a1, E)− eval(a2, E)

eval(a1 ∗ a2, E)
def
= eval(a1, E) ∗ eval(a2, E)

eval(a1 = a2, E)
def
= eval(a1, E) = eval(a2, E)

eval(a1 != a2, E)
def
= ¬(eval(a1, E) = eval(a2, E))

eval(a1 < a2, E)
def
= eval(a1, E) < eval(a2, E)

CFL 06, King’s College London – p. 19/50

Interpreter (2)
eval(skip, E) def

= E
eval(x := a, E) def

= E(x 7→ eval(a, E))
eval(if b then cs1 else cs2, E)

def
=

if eval(b, E) then eval(cs1, E)
else eval(cs2, E)

eval(while b do cs, E) def
=

if eval(b, E)
then eval(while b do cs, eval(cs, E))
else E

eval(write x, E) def
= { println(E(x)) ; E }

CFL 06, King’s College London – p. 20/50

Test Program

??

CFL 06, King’s College London – p. 21/50

Interpreted Code

200 400 600 800 1,000 1,200 1,400

100

200

300

n

se
cs

CFL 06, King’s College London – p. 22/50

Java Virtual Machine

introduced in 1995
is a stack-based VM (like Postscript, CLR of .Net)
contains a JIT compiler
many languages take advantage of JVM’s
infrastructure (JRE)
is garbage collected⇒ no buffer overflows
some languages compile to the JVM: Scala,
Clojure…

CFL 06, King’s College London – p. 23/50

Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk
Slides & Progs: KEATS (also homework is there)

1 Introduction, Languages 6 While-Language
2 Regular Expressions, Derivatives 7 Compilation, JVM
3 Automata, Regular Languages 8 Compiling Functional Languages
4 Lexing, Tokenising 9 Optimisations
5 Grammars, Parsing 10 LLVM

CFL 06, King’s College London – p. 24/50

Starting Symbol

S ::= A · S · B | B · S · A | ϵ

A ::= a | ϵ

B ::= b

TODO: Testcases for math expressions
https://github.com/ArashPartow/
math‐parser‐benchmark‐project

CFL 06, King’s College London – p. 25/50

https://github.com/ArashPartow/math-parser-benchmark-project
https://github.com/ArashPartow/math-parser-benchmark-project

Hierarchy of Languages
Recall that languages are sets of strings.

all languages

decidable languages

context sensitive languages
context-free languages

regular languages

CFL 06, King’s College London – p. 26/50

Parser Combinators

Atomic parsers, for example

1 :: rest ⇒ {(1, rest)}

you consume one or more tokens from the
input (stream)
also works for characters and strings

CFL 06, King’s College London – p. 27/50

Alternative parser (code p | q)

apply p and also q; then combine the outputs

p(input) ∪ q(input)

CFL 06, King’s College London – p. 28/50

Sequence parser (code p ∼ q)

apply first p producing a set of pairs
then apply q to the unparsed parts
then combine the results:

((output1, output2), unparsed part)

{((o1, o2), u2) |
(o1, u1) ∈ p(input)∧
(o2, u2) ∈ q(u1)}

CFL 06, King’s College London – p. 29/50

Function parser (code p ⇒ f)

apply p producing a set of pairs
then apply the function f to each first component

{(f(o1), u1) | (o1, u1) ∈ p(input)}

CFL 06, King’s College London – p. 30/50

Types of Parsers
Sequencing: if p returns results of type T, and q
results of type S, then p ∼ q returns results of type

T× S

Alternative: if p returns results of type T then q
must also have results of type T, and p | q returns
results of type

T
Semantic Action: if p returns results of type T and f
is a function from T to S, then p ⇒ f returns results
of type

S

CFL 06, King’s College London – p. 31/50

Types of Parsers
Sequencing: if p returns results of type T, and q
results of type S, then p ∼ q returns results of type

T× S
Alternative: if p returns results of type T then q
must also have results of type T, and p | q returns
results of type

T

Semantic Action: if p returns results of type T and f
is a function from T to S, then p ⇒ f returns results
of type

S

CFL 06, King’s College London – p. 31/50

Types of Parsers
Sequencing: if p returns results of type T, and q
results of type S, then p ∼ q returns results of type

T× S
Alternative: if p returns results of type T then q
must also have results of type T, and p | q returns
results of type

T
Semantic Action: if p returns results of type T and f
is a function from T to S, then p ⇒ f returns results
of type

S
CFL 06, King’s College London – p. 31/50

TwoGrammars
Which languages are recognised by the following
two grammars?

S ::= 1 · S · S | ϵ

U ::= 1 · U | ϵ

CFL 06, King’s College London – p. 32/50

Ambiguous Grammars

100 200 300 400 500 600 700 800 900 1000

5

10

15

20

25

30

1s

tim
e
in

se
cs

unambiguous

CFL 06, King’s College London – p. 33/50

Ambiguous Grammars

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

1s

tim
e
in

se
cs

unambiguous
ambiguous

CFL 06, King’s College London – p. 33/50

Arithmetic Expressions
A grammar for arithmetic expressions and numbers:

E ::= E ·+ · E | E · ∗ · E | (·E·) | N
N ::= N · N | 0 | 1 | . . . | 9

Unfortunately it is left-recursive (and ambiguous).

A problem for recursive descent parsers (e.g. parser
combinators).

CFL 06, King’s College London – p. 34/50

Arithmetic Expressions
A grammar for arithmetic expressions and numbers:

E ::= E ·+ · E | E · ∗ · E | (·E·) | N
N ::= N · N | 0 | 1 | . . . | 9

Unfortunately it is left-recursive (and ambiguous).

A problem for recursive descent parsers (e.g. parser
combinators).

CFL 06, King’s College London – p. 34/50

Numbers

N ::= N · N | 0 | 1 | . . . | 9

A non-left-recursive, non-ambiguous grammar for
numbers:

N ::= 0 · N | 1 · N | . . . | 0 | 1 | . . . | 9

CFL 06, King’s College London – p. 35/50

Removing Left-Recursion
The rule for numbers is directly left-recursive:

N ::= N · N | 0 | 1 (. . .)

Translate

N ::= N · α
| β ⇒

N ::= β · N′

N′ ::= α · N′

| ϵ

Which means in this case:

N → 0 · N′ | 1 · N′

N′ → N · N′ | ϵ

CFL 06, King’s College London – p. 36/50

Removing Left-Recursion
The rule for numbers is directly left-recursive:

N ::= N · N | 0 | 1 (. . .)

Translate

N ::= N · α
| β ⇒

N ::= β · N′

N′ ::= α · N′

| ϵ

Which means in this case:

N → 0 · N′ | 1 · N′

N′ → N · N′ | ϵ

CFL 06, King’s College London – p. 36/50

Chomsky Normal Form

All rules must be of the form

A ::= a

or

A ::= B · C

No rule can contain ϵ.

CFL 06, King’s College London – p. 37/50

ϵ-Removal
1 If A ::= α · B · β and B ::= ϵ are in the grammar,

then add A ::= α · β (iterate if necessary).
2 Throw out all B ::= ϵ.

N ::= 0 · N′ | 1 · N′

N′ ::= N · N′ | ϵ
N ::= 0 · N′ | 1 · N′ | 0 | 1
N′ ::= N · N′ | N | ϵ

N ::= 0 · N′ | 1 · N′ | 0 | 1
N′ ::= N · N′ | N

N ::= 0 · N | 1 · N | 0 | 1

CFL 06, King’s College London – p. 38/50

ϵ-Removal
1 If A ::= α · B · β and B ::= ϵ are in the grammar,

then add A ::= α · β (iterate if necessary).
2 Throw out all B ::= ϵ.

N ::= 0 · N′ | 1 · N′

N′ ::= N · N′ | ϵ
N ::= 0 · N′ | 1 · N′ | 0 | 1
N′ ::= N · N′ | N | ϵ

N ::= 0 · N′ | 1 · N′ | 0 | 1
N′ ::= N · N′ | N

N ::= 0 · N | 1 · N | 0 | 1

CFL 06, King’s College London – p. 38/50

CYKAlgorithm

If grammar is in Chomsky normalform …

S ::= N · P
P ::= V · N
N ::= N · N
N ::= students | Jeff | geometry | trains
V ::= trains

Jeff trains geometry students

CFL 06, King’s College London – p. 39/50

CYKAlgorithm

fastest possible algorithm for recognition problem
runtime is O(n3)

grammars need to be transformed into CNF

CFL 06, King’s College London – p. 40/50

TheGoal of this Course

Write a Compiler

lexer parser code gen

We have a lexer and a parser…

CFL 06, King’s College London – p. 41/50

Stmt ::= skip
| Id := AExp
| if BExp then Block else Block
| while BExp do Block
| read Id
| write Id
| write String

Stmts ::= Stmt ; Stmts
| Stmt

Block ::= { Stmts }
| Stmt

AExp ::= …
BExp ::= …

CFL 06, King’s College London – p. 42/50

??

CFL 06, King’s College London – p. 43/50

An Interpreter

{
x := 5;
y := x ∗ 3;
y := x ∗ 4;
x := u ∗ 3

}

the interpreter has to record the value of x before
assigning a value to y

eval(stmt, env)

CFL 06, King’s College London – p. 44/50

An Interpreter

{
x := 5;
y := x ∗ 3;
y := x ∗ 4;
x := u ∗ 3

}

the interpreter has to record the value of x before
assigning a value to y
eval(stmt, env)

CFL 06, King’s College London – p. 44/50

An Interpreter

eval(n, E) def
= n

eval(x, E) def
= E(x) lookup x in E

eval(a1 + a2, E)
def
= eval(a1, E) + eval(a2, E)

eval(a1 − a2, E)
def
= eval(a1, E)− eval(a2, E)

eval(a1 ∗ a2, E)
def
= eval(a1, E) ∗ eval(a2, E)

eval(a1 = a2, E)
def
= eval(a1, E) = eval(a2, E)

eval(a1 != a2, E)
def
= ¬(eval(a1, E) = eval(a2, E))

eval(a1 < a2, E)
def
= eval(a1, E) < eval(a2, E)

CFL 06, King’s College London – p. 45/50

An Interpreter (2)
eval(skip, E) def

= E
eval(x := a, E) def

= E(x 7→ eval(a, E))
eval(if b then cs1 else cs2, E)

def
=

if eval(b, E) then eval(cs1, E)
else eval(cs2, E)

eval(while b do cs, E) def
=

if eval(b, E)
then eval(while b do cs, eval(cs, E))
else E

eval(write x, E) def
= { println(E(x)) ; E }

CFL 06, King’s College London – p. 46/50

Test Program

??

CFL 06, King’s College London – p. 47/50

Interpreted Code

200 400 600 800 1,000 1,200 1,400

100

200

300

n

se
cs

CFL 06, King’s College London – p. 48/50

Java Virtual Machine

introduced in 1995
is a stack-based VM (like Postscript, CLR of .Net)
contains a JIT compiler

From the Cradle to the Holy Graal - the JDK Story
https://www.youtube.com/watch?v=h419kfbLhUI

is garbage collected⇒ no buffer overflows
some languages compile to the JVM: Scala,
Clojure…

CFL 06, King’s College London – p. 49/50

https://www.youtube.com/watch?v=h419kfbLhUI

LLVM

LLVM started by academics in 2000 (University of
Illinois in Urbana-Champaign)
suite of compiler tools
SSA-based intermediate language
no need to allocate registers
source languages: C, C++, Rust, Go, Swift
target CPUs: x86, ARM, PowerPC, …

CFL 06, King’s College London – p. 50/50

