Automata and
Formal Languages (2)

Email: christian.urban at kcl.ac.uk
Office: Sr1.27 (st floor Strand Building)
Slides: KEATS

time in secs

An Efficient Regular
Expression Matcher

§ 10 1§ 20 2§ 30

as

time in secs

= »N W
oOowounodRo

0 3,000 6,000 9,00012,000

as

Languages, Strings

e Strings are lists of characters, for example
[], abc (Pattern match: c::s)

o A language is a set of strings, for example

{11, bello, foobar, a, abc)

o Concatenation of strings and sets
foo @ bar = foobar

def

A@B = {s5;@s, | s, € ANs, € B}

Regular Expressions

Their inductive definition:

ﬁm&

ry 71,
rt+r,

null

empty string / > / ||
character

sequence
alternative / choice
star (zero or more)

abstract class Rexp

case object EMPTY e
Th case class CHAR(c:
case class ALT(rl:
case class SEQ(rl:
case class STAR(r:

case object NULL extends Rexp

xtends Rexp

Char) extends Rexp

Rexp, r2: Rexp) extends Rexp
Rexp, r2: Rexp) extends Rexp
Rexp) extends Rexp

%)

rou=
| €
|
|
|
|

null

empty string / > / ||
character

sequence
alternative / choice
star (zero or more)

The Meaning of a
Regular Expression

def

L) = o

L(e) = {1}

L(e) = {[}
L(r,+r,) o L(r,) UL(r,)
Lr,-r) £ L(r)@L(r,)

L(r*) = UnZoL(r)n

L is a function from
regular expressions to sets
of strings

L : Rexp = Set|[String]

The Meaning of a
Regular Expression

Lo) = @
L) = {0}
L) = {[]}
L(ri+r) = L(r)UL(r,)
Lr,-r) £ Lr)@L(r,)
L(r*) = UnZoL(r)n
L(r)° = [} s exronons t0 5613
L(r)n+l = L(’”) @L(r)” of strings

L : Rexp = Set|[String]

What is L(a*)?

Concrete Equivalences

(a+b)+c = a+ (b+¢)
ata = a
a+b = b+a
(@a-b)-c = a-(b-0)
c-(a+b) = (c-a)+(c-b)

Concrete Equivalences

(a+b)+c = a+ (b+¢)
ata = a
a+b = b+a
(@a-b)-c = a-(b-0)
c-(a+b) = (c-a)+(c-b)
a-a %= a
a+(b-c) £ (a+b) (a+o)

Corner Cases

]
|
o

I T
]

Simplification Rules

r+ 9
I ~+r
r-€
€-r
r-J
D-r
r+r

ﬁ@@?\?ﬁ

The Specification
for Matching

A regular expression matches a string s
if and only if

s € L(r)

(a?{n}) - ain}

s
n“—_
g X o)
£ B % ~
5 o
[« Pl AV “
¢ ¢ i
' } - } t t Mu
O v O Y©w O w»“ O

=

~ N] —

$39S UT dWn)

Evil Regular Expressions

o Regular expression Denial of Service (ReDoS)

o Evil regular expressions

o (a?{n})-a{n}
o (at)*

o ([a-2]")"

o (at+a-a)t

o (a+a?)"

A Matching Algorithm

...whether a regular expression can match the
empty string:

nullable() = false

nullable(€) < true

(¢) = false

nullable(r, +r,) <= nullable(r,) N nullable(r,)

nullable(r, - r,) < nullable(r,) N nullable(r,)
(

nullable(r*) < true

The Derivative of a Rexp

If » matches the string c::s, what is a
regular expression that matches s?

der cr gives the answer

The Derivative of a Rexp (2)

derc (D)

derc (€)

derc (d)

derc (ry+r,)
(

2
derc(ry-7,)

derc (r*)

& ifc = d then € else @

def
= dercr, +dercr,

de

< if nullable (r,)
then (dercr,) - r, +dercr,
else (dercr,) -7,

< (dercr) - (r*)

The Derivative of a Rexp (2)

derc (D) =0

derc (€) =0

derc (d) “ if c = d then € else @
(
(

def

derc(ro+r,) = dercr,+dercr,

de

derc(ry-7,) i nullable(r,)
then (dercr,) - r, +dercr,
else (dercr,) -7,

derc (r*) 2 (dercr) - (r*)

def

ders (| r r

def

ders (c::s)r = derss (dercr)

Examples

Givenr < ((a-) + b)* what is

derar =?
derbr =?
dercr =?

Input:
Step 1:
Step 2:
Step 3:
Step 4:

Output:

The Algorithm

ry, abc

build derivative of z and r, (r, = derar,)

(
build derivative of b and r, (r; = derbr,)
build derivative of cand r; (r, = derbr;)

the string is exhausted; test (zullable(r,))
whether 7, can recognise
the empty string

result of the test
=> true or false

time in secs

(a?{n}) - ain}

——Python
—o~Ruby
——Scala V1

5 10 15 20 25 30
as

A Problem

We represented the “n-times” #{n} as a sequence
regular expression:

I a
a-a
3 a-a-a

13: 4a-a-a-a-a-a-a-da-a-a-a-a-a
20:

This problem is aggravated with 2? being
represented as € + 4.

Solving the Problem

What happens if we extend our regular
expressions

rou=
|
-

What is their meaning? What are the cases for
nullable and der?

time in secs

(a?{n}) - ain}

30 | —o—Python
—o-Ruby
25 1|+ Scala V1
20 {7+ Scala V2
15 1L
10 ||
5 |7
oMo

800 1,000

Examples

Recall the example of r = ((a - 4) + 4)* with
derar = ((e-b)+ @) -r
derbr = ((D-b)+€)-r
dercr=((2-6)+9)-r

What are these regular expressions equivalent to?

time in secs

30 ¢
25 |
20 |
15 |
10 |

I

o

u|
O

(a?{n}) - ain}

3,000 (000 9,000 12,000

as

Proofs about Rexps

Remember their inductive definition:

ro %)
€
C
ryr,
ry 7,

r*

If we want to prove something, say a property
P(r), for all regular expressions 7 then ...

Proofs about Rexp (2)

e P holds for @, € and ¢

e P holds for r, + r, under the assumption that P
already holds for 7, and 7.

e P holds for 7, - r, under the assumption that P
already holds for 7, and 7.

@ P holds for * under the assumption that P
already holds for 7.

Proofs about Rexp (3)

Assume P(r) is the property:

nullable(r) if and only if [| € L(r)

Proofs about Rexp (4)

rev(d) =
def

rev(e) =€
def

rev(c) =c¢
rev(ry +7,) = rev(ry) + rev(r,)
def
rev(r, - r,) =rev(r,) - rev(r;)

def

rev(r*) =rev(r)*

We can prove
L(rev(r)) ={s"|se€ L(r)}

by induction on 7.

Proofs about Rexp (5)

Let Derc A be the set defined as
DercA < {s|cise A}
We can prove
L(dercr) = Derc (L(r))

by induction on 7.

Proofs about Strings

If we want to prove something, say a property
P(s), for all strings s then ...
e P holds for the empty string, and

@ P holds for the string c::5s under the assumption
that P already holds for s

Proofs about Strings (2)

We can finally prove

matches(r,s) if and only if s € L(r)

