
Scala in 6CCS3CFL
For the coursework in this module you are free to use any programming lan‑
guage you like, but I will show you all my code using Scala—I hope you have
fondmemories of Scala from PEP. If you need a reminder of the Scala handouts
for PEP have a look

But as said, you do not need to use Scala for your own code.1 I will use the
current stable version of Scala, which is 2.13.6. For various reasons, I am NOT
GOING TO USE THE LATEST VERSION OF SCALA 3.0! Please be aware of
this when you run my code.

The main difference to the Scala I showed you in PEP is that in CFL I will use
the Ammonite REPL

https://ammonite.io/#Ammonite-REPL

This is a drop‑in replacement for the original Scala REPL and works very sim‑
ilarly, for example

$ amm
Loading...
Welcome to the Ammonite Repl 2.4.0 (Scala 2.13.6 Java 9)
scala > 1 + 2
res0: Int = 3

Ammonite uses the same Scala compiler, just adds some useful features on top
of it. It is quite main‑stream in the Scala community and it should therefore be
very easy for you to install amm. If you work under a Unix‑like system, a sure
way to install the right version of Ammonite is by using curl:

$ curl -L https://github.com/com-lihaoyi/Ammonite/
releases/download/2.4.0/2.13-2.4.0 --output amm

The big advantage of Ammonite is that it comes with some additional li‑
braries already built‑in and also allows one to easily break up code into smaller
modules. For example reading and writing files in Ammonite can be achieved
with

scala > import $ivy.`com.lihaoyi::os-lib:0.8.0`
scala > import os._

scala > read(pwd / "file.name")
res1: String = """..."""

scala > write.over(pwd / "file.name", "foo bar")

© Christian Urban, King’s College London, 2020, 2021
1Haskell, Rust, Ocaml were other languages that have been used previously in CFL. I recom‑

mend to not use Java or C for writing a compiler, but if you insist, feel free. It has been done before.

1

http://talisker.nms.kcl.ac.uk/cgi-bin/repos.cgi/pep-material/raw-file/tip/handouts/pep-ho.pdf
https://ammonite.io/#Ammonite-REPL

The latter writes the string "foo bar" into the file "file.name", which is lo‑
cated in the current working directory. For loading and accessing code from
another Scala file, you can import it as follows:

import $file.name-of-the-file
import name-of-the-file._

This assumes the other Scala file is called name-of-the-file.sc and requires
the file to be in the same directory where amm is working in. This will be very
convenient for the compiler we implement in CFL, because it allows us to easily
break up the code into the lexer, parser and code generator.

Another featurewhich exists inAmmonite, but not yet in the current version
of Scala (it will be in the next version called dotty) is that you canmark functions
as @main. For example

@main
def foo() = ...

This means you can now call that function from the command line like

$ amm file.sc foo

If youwant to specify an argument on the commandline, say an int and a string,
then you can write

@main
def bar(i: Int, s: String) = ...

and then call
$ amm file.sc 42 foobar

What is also good in Ammonite that you can specify more than one function to
be “main” and then specify on the command line which function you want to
run as entry‑point.

Another feature you might like to use is that Ammonite can “watch” files.
This means it can automatically re‑run a file when it is saved. For this you have
to call amm with the option -w, as in

$ amm -w file.sc

Of course this requires that you use println for inspecting any data, as other‑
wise nothing will be displayed at the commandline.

To sum up, Ammonite is a really useful addition to the Scala ecosystem. You
can find more information about how to use it in the first five chapters of the
“Hands‑on Scala” book by Li Haoyi. These chapters are free and can be used
as a reference, see:

https://www.handsonscala.com/part-i-introduction-to-scala.html

2

https://www.handsonscala.com/part-i-introduction-to-scala.html

