
Handout 5
Whenever you want to design a new programming language or implement a
compiler for an existing language, the first task is to fix the basic “words” of
the language. For example what are the keywords, or reserved words, of the
language, what are permitted identifiers, numbers, expressions and so on. One
convenient way to do this is, of course, by using regular expressions.

In this course we want to take a closer look at the WHILE programming
language. This is a simple imperative programming language consisting of
arithmetic expressions, assignments, if-statements and loops. For example the
Fibonacci program can be written in this language as follows:

1 write "Input a number ";
2 read n;
3 x := 0;
4 y := 1;
5 while n > 0 do {
6 temp := y;
7 y := x + y;
8 x := temp;
9 n := n - 1

10 };
11 write "Result ";
12 write y

The keywords in this language will be

while, if, then, else, write, read

In addition we will have some common operators, such as <, >, := and so on,
as well as numbers and strings (which we however ignore for the moment). We
also need to specify what the “whitespace” is in our programming language and
what comments should look like. As a first try, we might specify the regular
expressions for our language roughly as follows

LETTER := a+ A+ b+ B+ . . .
DIGIT := 0+ 1+ 2+ . . .
KEYWORD := while+ if+ then+ else+ . . .
IDENT := LETTER · (LETTER + DIGIT + _)∗

OP := :=+ <+ . . .

NUM := DIGIT+

WHITESPACE := (” ” + \n)+

Having the regular expressions in place, the problem we have to solve is:
given a string of our programming language, which regular expression matches
which part of the string. By solving this problem, we can split up a string of
our language into components. For example given the input string

1



..i ..f .. ..t ..r ..u ..e .. ..t ..h ..e ..n .. ..x ..+ ..2 .. ..e ..l ..s ..e .. ..x ..+ ..3

we expect it will be split up as follows

..i ..f .. ..t ..r ..u ..e .. ..t ..h ..e ..n .. ..x ..+ ..2 .. ..e ..l ..s ..e .. ..x ..+ ..3

This process of splitting an input string into components is often called lexing
or scanning. It is usually the first phase of a compiler. Note that the separation
into words cannot, in general, be done by just looking at whitespaces: while
if and true are separated by a whitespace, this is not always the case. As
can be seen the three components in x+2 are not separated by any whitespace.
Another reason for recognising whitespaces explicitly is that in some languages,
for example Python, whitespace matters. However in our small language we
will eventually just filter out all whitespaces and also all comments.

Lexing will not just separate a string into its components, but also classify
the components, that is explicitly record that if is a keyword, a whitespace,
true an identifier and so on. For the moment, though, we will only focus on
the simpler problem of just splitting a string into components.

There are a few subtleties we need to consider first. For example, say the
string is

..i ..f ..f ..o ..o .. ..…

then there are two possibilities for how it can be split up: either we regard the
input as the keyword if followed by the identifier foo (both regular expressions
match) or we regard iffoo as a single identifier. The choice that is often made
in lexers is to look for the longest possible match. This leaves iffoo as the only
match (since it is longer than if).

Unfortunately, the convention about the longest match does not yet make
the whole process of lexing completely deterministic. Consider the string

..t ..h ..e ..n .. ..…

Clearly, this string should be identified as a keyword. The problem is that also
the regular expression IDENT for identifiers matches this string. To overcome
this ambiguity we need to rank our regular expressions. In our running example
we just use the ranking

KEYWORD < IDENT < OP < . . .

So even if both regular expressions match in the example above, we give pref-
erence to the regular expression for keywords.

Let us see how our algorithm for lexing works in detail. The regular expres-
sions and their ranking are shown above. For our algorithm it will be helpful to
have a look at the function zeroable defined as follows:

2



zeroable(∅)
def
= true

zeroable(ϵ)
def
= false

zeroable(c)
def
= false

zeroable(r1 + r2)
def
= zeroable(r1) ∧ zeroable(r2)

zeroable(r1 · r2)
def
= zeroable(r1) ∨ zeroable(r2)

zeroable(r∗)
def
= false

In contrast to the function nullable(r), which test whether a regular expression
can match the empty string, the zeroable function identifies whether a regular
expression cannot match anything at all. The mathematical way of stating this
property is

zeroable(r) if and only if L(r) = ∅

Let us fix a set of regular expressions rs. The crucial idea of the algorithm
working with rs and the string, say

..c1..c2..c3..c4..…

is to build the derivative of all regular expressions in rs with respect to the
first character c1. Then we take the results and continue with building the
derivatives with respect to c2 until we have either exhausted our input string or
all of the regular expressions are “zeroable”.

3


