Homework 9

- 1. Describe what is meant by *eliminating tail recursion*, when such an optimization can be applied and why it is a benefit?
- 2. It is true (I confirmed it) that

if \emptyset does not occur in *r* then $L(r) \neq \{\}$

holds, or equivalently

 $L(r) = \{\}$ implies \emptyset occurs in r.

You can prove either version by induction on *r*. The best way to make more formal what is meant by ' \emptyset occurs in *r*', you can define the following function:

Now you can prove

$$L(r) = \{\}$$
 implies $occurs(r)$.

The interesting cases are $r_1 + r_2$ and r^* . The other direction is not true, that is if occurs(r) then $L(r) = \{\}$. A counter example is $\emptyset + a$: although \emptyset occurs in this regular expression, the corresponding language is not empty. The obvious extension to include the not-regular expression, $\sim r$, also leads to an incorrect statement. Suppose we add the clause

$$occurs(\sim r) \stackrel{\text{def}}{=} occurs(r)$$

to the definition above, then it will not be true that

$$L(r) = \{\}$$
 implies $occurs(r)$.

Assume the alphabet contains just *a* and *b*, find a counter example to this property.