
Compilers and
Formal Languages (9)

Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)
Slides: KEATS (also homework is there)

CFL 09, King’s College London – p. 1/29

While Language
Stmt ::= skip

| Id := AExp
| if BExp then Block else Block
| while BExp do Block
| read Id
| write Id
| write String

Stmts ::= Stmt ; Stmts | Stmt
Block ::= {Stmts } | Stmt
AExp ::= …
BExp ::= …

CFL 09, King’s College London – p. 2/29

Fibonacci Numbers

write ”Fib”;
read n;
minus1 := 0;
minus2 := 1;
while n > 0 do {

temp := minus2;
minus2 := minus1 + minus2;
minus1 := temp;
n := n - 1

};
write ”Result”;
write minus2

CFL 09, King’s College London – p. 3/29

BF***
some big array, say a; 7 (8) instructions:
> move ptr++
< move ptr--
+ add a[ptr]++
- subtract a[ptr]--
. print out a[ptr] as ASCII
[if a[ptr] == 0 jump just after the
corresponding]; otherwise ptr++
] if a[ptr] != 0 jump just after the
corresponding [; otherwise ptr++

CFL 09, King’s College London – p. 4/29

Arrays inWhile

new arr[15000]

x := 3 + arr[3 + y]

arr[42 * n] := ...

CFL 09, King’s College London – p. 5/29

NewArrays

new arr[number]

ldc number
newarray int
astore loc_var

CFL 09, King’s College London – p. 6/29

Array Update

arr[...] :=

aload loc_var
index_aexp
value_aexp
iastore

CFL 09, King’s College London – p. 7/29

Array Lookup in AExp

...arr[...]...

aload loc_var
index_aexp
iaload

CFL 09, King’s College London – p. 8/29

Using a compiler,
how can youmount the
perfect attack against a system?

CFL 09, King’s College London – p. 9/29

What is a perfect attack?

1 you can potentially completely take over a target
system

2 your attack is (nearly) undetectable
3 the victim has (almost) no chance to recover

CFL 09, King’s College London – p. 10/29

clean
compiler

login
(src)

login
(bin)■

CFL 09, King’s College London – p. 11/29

clean
compiler

login
(src)

login
(bin)

■

CFL 09, King’s College London – p. 11/29

hacked
compiler

login
(src)

login
(bin)■

CFL 09, King’s College London – p. 11/29

V0.01

Scala
host language

my compiler (src)

V0.02

Scala

…
V1.00

Scala

V1.00

V1.01

V1.01

V1.02

…

…

no host language
needed

CFL 09, King’s College London – p. 12/29

V0.01

Scala
host language

my compiler (src)
V0.02

Scala

…
V1.00

Scala

V1.00

V1.01

V1.01

V1.02

…

…

no host language
needed

CFL 09, King’s College London – p. 12/29

V0.01

Scala
host language

my compiler (src)
V0.02

Scala

…
V1.00

Scala

V1.00

V1.01

V1.01

V1.02

…

…

no host language
needed

CFL 09, King’s College London – p. 12/29

V0.01

Scala
host language

my compiler (src)
V0.02

Scala

…
V1.00

Scala

V1.00

V1.01

V1.01

V1.02

…

…

no host language
needed

CFL 09, King’s College London – p. 12/29

Hacking Compilers

Ken Thompson
Turing Award, 1983

Ken Thompson showed how to hide
a Trojan Horse in a compiler without
leaving any traces in the source code.
No amount of source level verifi-
cation will protect you from such
Thompson-hacks.

CFL 09, King’s College London – p. 13/29

Hacking Compilers

Ken Thompson
Turing Award, 1983

Ken Thompson showed how to hide
a Trojan Horse in a compiler without
leaving any traces in the source code.
No amount of source level verifi-
cation will protect you from such
Thompson-hacks.

CFL 09, King’s College London – p. 13/29

1) Assume you ship the compiler as
binary and also with sources.

2) Make the compiler aware when it
compiles itself.

3) Add the Trojan horse.
4) Compile.
5) Delete Trojan horse from the sources

of the compiler.
6) Go on holiday for the rest of your

life. ;o)

Hacking Compilers

Ken Thompson
Turing Award, 1983

Ken Thompson showed how to hide
a Trojan Horse in a compiler without
leaving any traces in the source code.
No amount of source level verifi-
cation will protect you from such
Thompson-hacks.

CFL 09, King’s College London – p. 13/29

CFL 09, King’s College London – p. 14/29

Compilers &Boeings 777
First flight in 1994. They want to achieve triple
redundancy in hardware faults.

They compile 1 Ada program to

Intel 80486
Motorola 68040 (old Macintosh’s)
AMD 29050 (RISC chips used often in laser
printers)
using 3 independent compilers.

Airbus uses C and static analysers. Recently started using
CompCert.

CFL 09, King’s College London – p. 15/29

Compilers &Boeings 777
First flight in 1994. They want to achieve triple
redundancy in hardware faults.

They compile 1 Ada program to

Intel 80486
Motorola 68040 (old Macintosh’s)
AMD 29050 (RISC chips used often in laser
printers)
using 3 independent compilers.

Airbus uses C and static analysers. Recently started using
CompCert.

CFL 09, King’s College London – p. 15/29

Goal
Remember the Bridges example?
Can we look at our programs and somehow
ensure they are bug free/correct?

Very hard: Anything interesting about programs
is equivalent to the Halting Problem, which is
undecidable.

Solution: We avoid this “minor” obstacle by
being as close as possible of deciding the halting
problem, without actually deciding the halting
problem. ⇒ yes, no, don’t know (static analysis)

CFL 09, King’s College London – p. 16/29

Goal
Remember the Bridges example?
Can we look at our programs and somehow
ensure they are bug free/correct?

Very hard: Anything interesting about programs
is equivalent to the Halting Problem, which is
undecidable.

Solution: We avoid this “minor” obstacle by
being as close as possible of deciding the halting
problem, without actually deciding the halting
problem. ⇒ yes, no, don’t know (static analysis)

CFL 09, King’s College London – p. 16/29

Goal
Remember the Bridges example?
Can we look at our programs and somehow
ensure they are bug free/correct?

Very hard: Anything interesting about programs
is equivalent to the Halting Problem, which is
undecidable.

Solution: We avoid this “minor” obstacle by
being as close as possible of deciding the halting
problem, without actually deciding the halting
problem. ⇒ yes, no, don’t know (static analysis)

CFL 09, King’s College London – p. 16/29

What is Static Analysis?

depending on some initial input, a program
(behaviour) will “develop” over time.

CFL 09, King’s College London – p. 17/29

What is Static Analysis?

CFL 09, King’s College London – p. 18/29

What is Static Analysis?

CFL 09, King’s College London – p. 19/29

What is Static Analysis?

to be avoided

CFL 09, King’s College London – p. 20/29

What is Static Analysis?

this needs more work

CFL 09, King’s College London – p. 21/29

What is Static Analysis?

CFL 09, King’s College London – p. 22/29

Concrete Example:
Are VarsDefinitely Initialised?

Assuming x is initialised, what about y?

Prog. 1:
if x < 1 then y := x else y := x + 1;
y := y + 1

Prog. 2:
if x < x then y := y + 1 else y := x;
y := y + 1

CFL 09, King’s College London – p. 23/29

Concrete Example:
Are VarsDefinitely Initialised?

What should the rules be for deciding when a
variable is initialised?

variable x is definitely initialized after skip
iff x is definitely initialized before skip.

CFL 09, King’s College London – p. 24/29

Concrete Example:
Are VarsDefinitely Initialised?

What should the rules be for deciding when a
variable is initialised?

variable x is definitely initialized after skip
iff x is definitely initialized before skip.

CFL 09, King’s College London – p. 24/29

A is the set of definitely defined variables:

A skip A
vars(a) ⊆ A

A (x := a) {x} ∪A

A1 s1 A2 A2 s2 A3

A1 (s1; s2) A3

vars(b) ⊆ A A s1 A1 A s2 A2

A (if b then s1 else s2) A1 ∩A2

vars(b) ⊆ A A s A′

A (while b do s) A

we start with A = {}

CFL 09, King’s College London – p. 25/29

A is the set of definitely defined variables:

A skip A
vars(a) ⊆ A

A (x := a) {x} ∪A
A1 s1 A2 A2 s2 A3

A1 (s1; s2) A3

vars(b) ⊆ A A s1 A1 A s2 A2

A (if b then s1 else s2) A1 ∩A2

vars(b) ⊆ A A s A′

A (while b do s) A

we start with A = {}

CFL 09, King’s College London – p. 25/29

A is the set of definitely defined variables:

A skip A
vars(a) ⊆ A

A (x := a) {x} ∪A
A1 s1 A2 A2 s2 A3

A1 (s1; s2) A3

vars(b) ⊆ A A s1 A1 A s2 A2

A (if b then s1 else s2) A1 ∩A2

vars(b) ⊆ A A s A′

A (while b do s) A

we start with A = {}

CFL 09, King’s College London – p. 25/29

A is the set of definitely defined variables:

A skip A
vars(a) ⊆ A

A (x := a) {x} ∪A
A1 s1 A2 A2 s2 A3

A1 (s1; s2) A3

vars(b) ⊆ A A s1 A1 A s2 A2

A (if b then s1 else s2) A1 ∩A2

vars(b) ⊆ A A s A′

A (while b do s) A

we start with A = {}

CFL 09, King’s College London – p. 25/29

A is the set of definitely defined variables:

A skip A
vars(a) ⊆ A

A (x := a) {x} ∪A
A1 s1 A2 A2 s2 A3

A1 (s1; s2) A3

vars(b) ⊆ A A s1 A1 A s2 A2

A (if b then s1 else s2) A1 ∩A2

vars(b) ⊆ A A s A′

A (while b do s) A

we start with A = {}
CFL 09, King’s College London – p. 25/29

Dijkstra on Testing

“Program testing can be a very effective way to
show the presence of bugs, but it is hopelessly
inadequate for showing their absence.”

What is good about compilers: the either seem to work, or
go horribly wrong (most of the time).

CFL 09, King’s College London – p. 26/29

Proving Programs to be Correct
Theorem: There are infinitely many prime numbers.
Proof …

similarly

Theorem: The program is doing what it is supposed to
be doing.
Long, long proof …

This can be a gigantic proof. The only hope is to have help
from the computer. ‘Program’ is here to be understood to be
quite general (compiler, OS, …).

CFL 09, King’s College London – p. 27/29

CanThis BeDone?

in 2008, verification of a small C-compiler
“if my input program has a certain behaviour, then the
compiled machine code has the same behaviour”
is as good as gcc -O1, but much, much less buggy

CFL 09, King’s College London – p. 28/29

Fuzzy Testing
C-Compilers

tested GCC, LLVM and others by randomly
generating C-programs
found more than 300 bugs in GCC and also many
in LLVM (some of them highest-level critical)

about CompCert:

“The striking thing about our CompCert results is that the
middle-end bugs we found in all other compilers are absent.
As of early 2011, the under-development version of
CompCert is the only compiler we have tested for which
Csmith cannot find wrong-code errors. This is not for lack
of trying: we have devoted about six CPU-years to the task.”

CFL 09, King’s College London – p. 29/29

