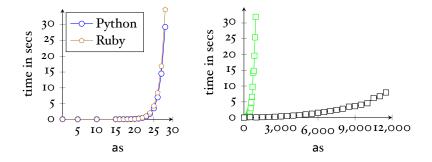
Compilers and Formal Languages (2)

Email: christian.urban at kcl.ac.uk Office: S1.27 (1st floor Strand Building) Slides: KEATS

An Efficient Regular Expression Matcher



• A **language** is a set of strings, for example {[], *bello*, *foobar*, *a*, *abc*}

• Concatenation of strings and languages foo @ bar = foobar $A @ B \stackrel{\text{def}}{=} \{s_1 @ s_2 \mid s_1 \in A \land s_2 \in B\}$

For example $A = \{foo, bar\}, B = \{a, b\}$

 $A @ B = \{fooa, foob, bara, barb\}$

The Power Operation

• The **Power** of a language:

 $\begin{array}{rcl} A^{\circ} & \stackrel{\mathrm{def}}{=} & \{[]\} \\ A^{n+1} & \stackrel{\mathrm{def}}{=} & A @ A^n \end{array}$

For example

$$A^{4} = A @A @A @A$$
$$A^{\circ} \stackrel{\text{def}}{=} \{ [] \}$$

CFL 02, King's College London - p. 4/38

Homework Question

• Say $A = \{[a], [b], [c], [d]\}.$

How many strings are in A^4 ?

CFL 02, King's College London - p. 5/38

Homework Question

• Say $A = \{[a], [b], [c], [d]\}.$

How many strings are in A^4 ?

What if $A = \{[a], [b], [c], []\};$ how many strings are then in A^4 ?

CFL 02, King's College London - p. 5/38

The Star Operation

• The **Star** of a language:

$$A^* \stackrel{\mathrm{def}}{=} \bigcup_{\mathrm{o} \leq n} A^n$$

This expands to

 $A^{\circ} \cup A^{\mathrm{I}} \cup A^{2} \cup A^{3} \cup A^{4} \cup \dots$

CFL 02, King's College London - p. 6/38

Semantic Derivative

• The **Semantic Derivative** of a language wrt to a character *c*:

$$Der \, c \, A \stackrel{\text{def}}{=} \{ s \mid c :: s \in A \}$$

For $A = \{foo, bar, frak\}$ then $Der fA = \{oo, rak\}$ $Der b A = \{ar\}$ $Der a A = \{\}$

CFL 02, King's College London - p. 7/38

Semantic Derivative

• The **Semantic Derivative** of a language wrt to a character *c*:

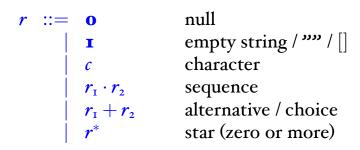
$$Der\,c\,A \stackrel{\text{def}}{=} \{s \mid c :: s \in A\}$$

For
$$A = \{foo, bar, frak\}$$
 then
 $Der fA = \{oo, rak\}$
 $Der b A = \{ar\}$
 $Der a A = \{\}$

We can extend this definition to strings $DerssA = \{s' \mid s@s' \in A\}$

Regular Expressions

Their inductive definition:



```
Th abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
```

<i>r</i> ::=	= 0	null
	I	empty string / "" / []
	c	character
	$r_{I} \cdot r_{2}$	sequence
	$r_{\mathrm{I}}+r_{\mathrm{2}}$	alternative / choice
	r*	star (zero or more)

The Meaning of a **Regular Expression** $L(\mathbf{0}) \stackrel{\text{def}}{=} \{\}$ $L(\mathbf{I}) \stackrel{\text{def}}{=} \{[]\}$ $L(c) \stackrel{\text{def}}{=} \{[c]\}$ $L(r_{I}+r_{2}) \stackrel{\text{def}}{=} L(r_{I}) \cup L(r_{2})$ $L(\mathbf{r}_{\mathrm{I}} \cdot \mathbf{r}_{\mathrm{2}}) \stackrel{\mathrm{def}}{=} L(\mathbf{r}_{\mathrm{I}}) @ L(\mathbf{r}_{\mathrm{2}})$ $L(\mathbf{r}^*) \stackrel{\text{def}}{=} (L(\mathbf{r}))^*$

L is a function from regular expressions to sets of strings $L : \text{Rexp} \Rightarrow \text{Set}[\text{String}]$

What is $L(a^*)$?

CFL 02, King's College London – p. 10/38

When Are Two Regular Expressions Equivalent?

$r_{\scriptscriptstyle \mathrm{I}} \equiv r_{\scriptscriptstyle 2} \stackrel{\mathrm{\tiny def}}{=} L(r_{\scriptscriptstyle \mathrm{I}}) = L(r_{\scriptscriptstyle 2})$

CFL 02, King's College London - p. 11/38

Concrete Equivalences

$$(a+b)+c \equiv a+(b+c)$$

$$a+a \equiv a$$

$$a+b \equiv b+a$$

$$(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$$

$$c \cdot (a+b) \equiv (c \cdot a) + (c \cdot b)$$

CFL 02, King's College London - p. 12/38

Concrete Equivalences

$$(a+b)+c \equiv a+(b+c)$$

$$a+a \equiv a$$

$$a+b \equiv b+a$$

$$(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$$

$$c \cdot (a+b) \equiv (c \cdot a) + (c \cdot b)$$

 $a \cdot a \not\equiv a$ $a + (b \cdot c) \not\equiv (a + b) \cdot (a + c)$

CFL 02, King's College London - p. 12/38

Corner Cases

 $\begin{array}{rrrrr} a \cdot \mathbf{0} & \not\equiv & a \\ a + \mathbf{1} & \not\equiv & a \\ \mathbf{1} & \equiv & \mathbf{0}^* \\ \mathbf{1}^* & \equiv & \mathbf{1} \\ \mathbf{0}^* & \not\equiv & \mathbf{0} \end{array}$

Simplification Rules

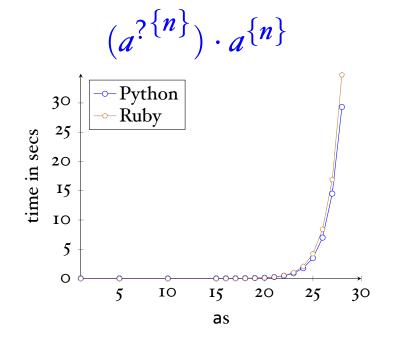
- $r+\mathbf{0} \equiv r$
- $\mathbf{0}+r \equiv r$
 - $r \cdot \mathbf{I} \equiv r$
 - $\mathbf{I} \cdot \mathbf{r} \equiv \mathbf{r}$
 - $r \cdot \mathbf{0} \equiv \mathbf{0}$
 - $\mathbf{0} \cdot \mathbf{r} \equiv \mathbf{0}$
- $r+r \equiv r$

The Specification for Matching

A regular expression *r* matches a string *s* if and only if

 $s \in L(r)$

CFL 02, King's College London - p. 15/38



CFL 02, King's College London - p. 16/38

Evil Regular Expressions

- Regular expression Denial of Service (ReDoS)
- Evil regular expressions

•
$$(a^{?{n}}) \cdot a^{{n}}$$

• $(a^{+})^{+}$
• $([a^{-}z]^{+})^{*}$
• $(a + a \cdot a)^{+}$
• $(a + a^{?})^{+}$

A Matching Algorithm

...whether a regular expression can match the empty string:

 $\begin{array}{ll} nullable(\mathbf{0}) & \stackrel{\text{def}}{=} false\\ nullable(\mathbf{1}) & \stackrel{\text{def}}{=} true\\ nullable(c) & \stackrel{\text{def}}{=} false\\ nullable(r_{I}+r_{2}) & \stackrel{\text{def}}{=} nullable(r_{I}) \lor nullable(r_{2})\\ nullable(r_{I}\cdot r_{2}) & \stackrel{\text{def}}{=} nullable(r_{I}) \land nullable(r_{2})\\ nullable(r^{*}) & \stackrel{\text{def}}{=} true \end{array}$

The Derivative of a Rexp

If r matches the string c::s, what is a regular expression that matches just s?

der cr gives the answer, Brzozowski 1964

CFL 02, King's College London - p. 19/38

The Derivative of a Rexp

 $\stackrel{\text{def}}{=}$ 0 der $c(\mathbf{0})$ $\stackrel{\text{def}}{=}$ 0 der $c(\mathbf{I})$ $\stackrel{\text{def}}{=}$ if c = d then **I** else **O** derc(d) $der c (r_1 + r_2) \stackrel{\text{def}}{=} der c r_1 + der c r_2$ der c $(r_1 \cdot r_2)$ $\stackrel{\text{def}}{=}$ if *nullable*(r_{I}) then $(der c r_1) \cdot r_2 + der c r_2$ else $(der c r_1) \cdot r_2$ $\stackrel{\text{def}}{=} (der c r) \cdot (r^*)$ der $c(r^*)$

The Derivative of a Rexp

 $\stackrel{\text{def}}{=}$ 0 der $c(\mathbf{0})$ $\stackrel{\text{def}}{=}$ 0 der $c(\mathbf{I})$ $\stackrel{\text{def}}{=}$ if c = d then **I** else **O** derc(d) $der c (r_1 + r_2) \stackrel{\text{def}}{=} der c r_1 + der c r_2$ der c $(r_1 \cdot r_2)$ $\stackrel{\text{def}}{=}$ if *nullable*(r_{I}) then $(der c r_1) \cdot r_2 + der c r_2$ else $(der c r_1) \cdot r_2$ $\stackrel{\text{def}}{=} (der c r) \cdot (r^*)$ der c (r^*) $\stackrel{\text{def}}{=} r$ ders [] r ders (c::s) $r \stackrel{\text{def}}{=} ders s (der c r)$

Given $r \stackrel{\text{def}}{=} ((a \cdot b) + b)^*$ what is

der a r = ?der b r = ?der c r = ?

CFL 02, King's College London - p. 21/38

The Algorithm

Input: r_{I} , *abc*

- Step 1: build derivative of a and r_{I}
- Step 2: build derivative of b and r_2
- Step 3: build derivative of c and r_3
- Step 4: the string is exhausted; test whether r_4 can recognise the empty string
- Output: result of the test

 \Rightarrow *true* or *false*

 $(r_2 = der \, a \, r_1)$ $(r_3 = der \, b \, r_2)$ $(r_4 = der \, b \, r_3)$ $(nullable(r_4))$

The Idea of the Algorithm

If we want to recognise the string *abc* with regular expression r_{I} then

• Der a $(L(r_1))$

The Idea of the Algorithm

If we want to recognise the string *abc* with regular expression r_{I} then

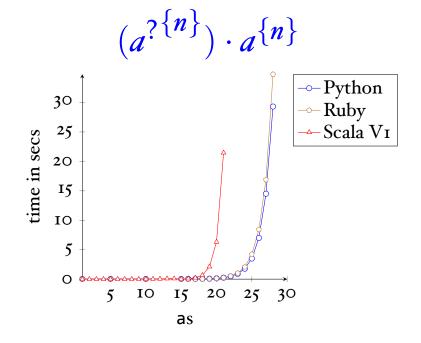
Der a (L(r_i))
 Der b (Der a (L(r_i)))

The Idea of the Algorithm

If we want to recognise the string *abc* with regular expression r_{I} then

- Der $a(L(r_1))$
- Der c (Der b (Der a $(L(r_{I})))$)
- finally we test whether the empty string is in this set; same for *Ders abc* $(L(r_1))$.

The matching algorithm works similarly, just over regular expressions instead of sets.

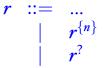


We represented the "n-times" $a^{\{n\}}$ as a sequence regular expression:

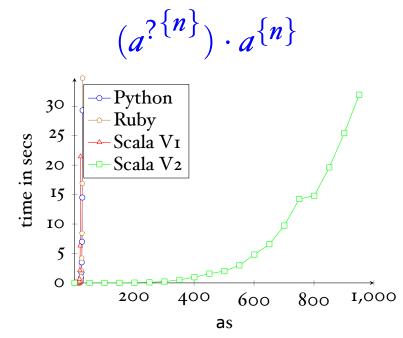
This problem is aggravated with $a^{?}$ being represented as $\mathbf{I} + a$.

Solving the Problem

What happens if we extend our regular expressions



What is their meaning? What are the cases for *nullable* and *der*?



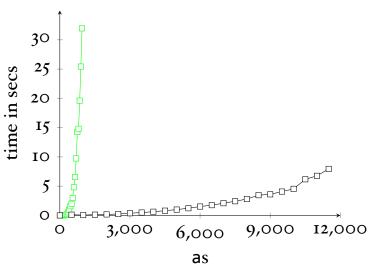
CFL 02, King's College London - p. 27/38

Recall the example of $r \stackrel{\text{def}}{=} ((a \cdot b) + b)^*$ with

$$der a r = ((\mathbf{I} \cdot b) + \mathbf{0}) \cdot r$$
$$der b r = ((\mathbf{0} \cdot b) + \mathbf{I}) \cdot r$$
$$der c r = ((\mathbf{0} \cdot b) + \mathbf{0}) \cdot r$$

What are these regular expressions equivalent to?

 $(a^{?^{\{n\}}})$ $\cdot a^{\{n\}}$



What is good about this Alg.

- extends to most regular expressions, for example
 ~ r
- is easy to implement in a functional language
- the algorithm is already quite old; there is still work to be done to use it as a tokenizer (that is brand new work)
- we can prove its correctness...

Remember their inductive definition:

$$r ::= \mathbf{0}$$

$$| \mathbf{I}$$

$$| c$$

$$| r_1 \cdot r_2$$

$$| r_1 + r_2$$

$$| r^*$$

If we want to prove something, say a property P(r), for all regular expressions r then ...

Proofs about Rexp (2)

- P holds for **0**, **I** and **c**
- *P* holds for $r_1 + r_2$ under the assumption that *P* already holds for r_1 and r_2 .
- *P* holds for $r_1 \cdot r_2$ under the assumption that *P* already holds for r_1 and r_2 .
- *P* holds for *r*^{*} under the assumption that *P* already holds for *r*.

Assume P(r) is the property:

nullable(r) if and only if [] $\in L(r)$

CFL 02, King's College London - p. 33/38

Proofs about Rexp (4)

$$rev(\mathbf{0}) \stackrel{\text{def}}{=} \mathbf{0}$$

$$rev(\mathbf{I}) \stackrel{\text{def}}{=} \mathbf{I}$$

$$rev(c) \stackrel{\text{def}}{=} c$$

$$rev(r_{I} + r_{2}) \stackrel{\text{def}}{=} rev(r_{I}) + rev(r_{2})$$

$$rev(r_{I} \cdot r_{2}) \stackrel{\text{def}}{=} rev(r_{2}) \cdot rev(r_{I})$$

$$rev(r^{*}) \stackrel{\text{def}}{=} rev(r)^{*}$$

We can prove

$$L(\mathit{rev}(\mathit{r})) = \{\mathit{s}^{\scriptscriptstyle - \imath} \mid \mathit{s} \in L(\mathit{r})\}$$

by induction on *r*.

Correctness Proof for our Matcher

• We started from

 $s \in L(r)$ $\Leftrightarrow \quad [] \in Derss(L(r))$

CFL 02, King's College London - p. 35/38

Correctness Proof for our Matcher

• We started from

 $s \in L(r)$ $\Leftrightarrow \quad [] \in Derss(L(r))$ • if we can show Derss(L(r)) = L(derssr) we have $\Leftrightarrow \quad [] \in L(derssr)$ $\Leftrightarrow \quad nullable(derssr)$

 $\stackrel{\text{def}}{=}$ matchessr

Let *Der c A* be the set defined as

$$Der \, c \, A \stackrel{\text{def}}{=} \{ s \mid c :: s \in A \}$$

We can prove

$$L(\operatorname{der} \operatorname{c} r) = \operatorname{Der} \operatorname{c} (L(r))$$

by induction on *r*.

CFL 02, King's College London - p. 36/38

Proofs about Strings

If we want to prove something, say a property P(s), for all strings *s* then ...

- *P* holds for the empty string, and
- *P* holds for the string *c*::*s* under the assumption that *P* already holds for *s*

Proofs about Strings (2)

We can then prove

Derss(L(r)) = L(derssr)

We can finally prove

matchess r if and only if $s \in L(r)$

CFL 02, King's College London - p. 38/38