
Automata and
Formal Languages (7)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

AFL 07, King’s College London, 13. November 2013 – p. 1/8

CFGs
A context-free grammar (CFG) G consists of:
a finite set of nonterminal symbols (upper case)
a finite terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A → rhs
where rhs are sequences involving terminals and
nonterminals (can also be empty).

We can also allow rules
A → rhs1|rhs2| . . .

AFL 07, King’s College London, 13. November 2013 – p. 2/8

CFGs
A context-free grammar (CFG) G consists of:
a finite set of nonterminal symbols (upper case)
a finite terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A → rhs
where rhs are sequences involving terminals and
nonterminals (can also be empty).
We can also allow rules

A → rhs1|rhs2| . . .

AFL 07, King’s College London, 13. November 2013 – p. 2/8

A CFG Derivation

...1 Begin with a string with only the start symbol S

...2 Replace any non-terminal X in the string by the
right-hand side of some production X → rhs

...3 Repeat 2 until there are no non-terminals

S → . . . → . . . → . . . → . . .

AFL 07, King’s College London, 13. November 2013 – p. 3/8

Language of a CFG
Let G be a context-free grammar with start
symbol S. Then the language L(G) is:

{c1 . . . cn | ∀i. ci ∈ T ∧ S →∗ c1 . . . cn}

Terminals are so-called because there are no rules
for replacing them
Once generated, terminals are “permanent”
Terminals ought to be tokens of the language (at
least in this course)

AFL 07, King’s College London, 13. November 2013 – p. 4/8

Language of a CFG
Let G be a context-free grammar with start
symbol S. Then the language L(G) is:

{c1 . . . cn | ∀i. ci ∈ T ∧ S →∗ c1 . . . cn}

Terminals are so-called because there are no rules
for replacing them
Once generated, terminals are “permanent”
Terminals ought to be tokens of the language (at
least in this course)

AFL 07, King’s College London, 13. November 2013 – p. 4/8

Arithmetic Expressions

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

A CFG is left-recursive if it has a nonterminal E
such that E →+ E · . . .

AFL 07, King’s College London, 13. November 2013 – p. 5/8

Arithmetic Expressions

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

A CFG is left-recursive if it has a nonterminal E
such that E →+ E · . . .

AFL 07, King’s College London, 13. November 2013 – p. 5/8

Parse Trees
E → F | F · ∗ · F
F → T | T · + · T | T · − · T
T → num_token | (·E·)

..E.

F

.

T

.

(E)

.

F * F

.

T

.

2

.

T

.

3

.

+

.

T

.

(E)

.

F

.

T + T

.

3

.

4
AFL 07, King’s College London, 13. November 2013 – p. 6/8

(2*3)+(3+4)

Ambiguous Grammars

A CFG is ambiguous if there is a string that has at
least parse trees.

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

1 + 2 * 3 + 4

AFL 07, King’s College London, 13. November 2013 – p. 7/8

Dangling Else

Another ambiguous grammar:

E → if E then E
| if E then E else E
| id

if a then if x then y else c

AFL 07, King’s College London, 13. November 2013 – p. 8/8

