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CFGs
A context-free grammar (CFG) G consists of:
a finite set of nonterminal symbols (upper case)
a finite terminal symbols or tokens (lower case)
a start symbol (which must be a nonterminal)
a set of rules

A → rhs
where rhs are sequences involving terminals and
nonterminals (can also be empty).

We can also allow rules
A → rhs1|rhs2| . . .
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A CFG Derivation

...1 Begin with a string with only the start symbol S

...2 Replace any non-terminal X in the string by the
right-hand side of some production X → rhs

...3 Repeat 2 until there are no non-terminals

S → . . . → . . . → . . . → . . .
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Language of a CFG
Let G be a context-free grammar with start
symbol S. Then the language L(G) is:

{c1 . . . cn | ∀i. ci ∈ T ∧ S →∗ c1 . . . cn}

Terminals are so-called because there are no rules
for replacing them
Once generated, terminals are “permanent”
Terminals ought to be tokens of the language (at
least in this course)
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Arithmetic Expressions

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

A CFG is left-recursive if it has a nonterminal E
such that E →+ E · . . .
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Parse Trees
E → F | F · ∗ · F
F → T | T · + · T | T · − · T
T → num_token | (·E·)
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Ambiguous Grammars

A CFG is ambiguous if there is a string that has at
least parse trees.

E → num_token
E → E · + · E
E → E · − · E
E → E · ∗ · E
E → (·E·)

1 + 2 * 3 + 4
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Dangling Else

Another ambiguous grammar:

E → if E then E
| if E then E else E
| id

if a then if x then y else c
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