CSCI 742 - Compiler Construction

Lecture 19
Introduction to Name Analysis
Instructor: Hossein Hojjat

February 28, 2018

Compiler Phases

Source Code
(concrete syntax)

‘if (xi==10)| [x|=x+1f;

Lexical Analysis
AR

Token Stream E@H

Syntax Analysis
(R (Parsing)
Abstract Syntex Tree == S o
(AST) ® © ® @
® @ Semantic Analysis
(Name Analysis,
Type Analysis, ...)

Attributed AST

Code Generation

Machine Code

Parser

Task of a parser:

find a derivation of a string in a context-free grammar

e CYK recognizes languages defined by context-free grammars
- Standard version operates only on Chomsky Normal Form (CNF)
- cubic time O(n?)
e Restricted forms of CFG can be parsed in linear time:
- LL (left to right, left-most derivation)
- LR (left to right, reverse right-most derivation)
e Simple top-down parser: LL(1)
- Basic recursive-descent implementation
e More powerful parser: LR(1), bottom-up
e An efficiency hack on top of LR(1): LALR(1)

What to expect next?

e Is X" an array, integer or a function? Is it declared?

Is the expression “x + Z' type-consistent?

In “x[i]", is “X" an array? Does it have the correct number of

dimensions?

e Where can “X" be stored? (register, local, global, heap, static)

e How many arguments does "“f()" take? What about “printf ()" ?

Error detection at different phases

e File input: file does not exist
e Lexer: unknown token, string not closed before end of file, ...

e Parser: syntax error - unexpected token, cannot parse given input
string, ...

e Name analyzer: unknown identifier, ...
e Type analyzer: applying function to arguments of wrong type, ...

e Data-flow analyzer: division by zero, loop runs forever, ...

Error detection at different phases

e File input: file does not exist
e Lexer: unknown token, string not closed before end of file, ...

e Parser: syntax error - unexpected token, cannot parse given input
string, ...

e Name analyzer: unknown identifier, ...
e Type analyzer: applying function to arguments of wrong type, ...

e Data-flow analyzer: division by zero, loop runs forever, ...

Problems detected by Name Analysis

e a class is defined more than once:
class A {...} class B {...} class A {...}
a variable is defined more than once:

int x; int y; int =x;
e a field member is overridden (forbidden in eMiniJava)
class A {int x; ...}
class B extends A {int x; ...}
e a method is overloaded (forbidden in eMiniJava)
class A { void £(B x) {} wvoid £(C x) {} ... }
e a method argument is shadowed by a local variable declaration
(forbidden in Java)
void £ (int x) { int x; ...}
e two method arguments have the same name
(forbidden in many languages)
void £ (int x, int y, int x) { ... }

Problems detected by Name Analysis

e a class name is used as a symbol (as parent class or type, for
instance) but is not declared:

class A extends Undeclared {}

e an identifier is used as a variable but is not declared:
int inc (int x, int amount)
{return x + ammount; }
e the inheritance graph has a cycle:
class A extends B {}
class B extends C {}

class C extends A

Identifier Definition

e Property: “Each identifier needs to be declared before usage”
e To check such a property we need “context” information:

the environment where a command executes in
e In theory we can use context-sensitive grammars to specify this

e In practice we use context-free grammars to specify valid syntax
and identify invalid programs using other mechanisms
- Those mechanisms enforce language properties that cannot be
expressed with a CFG
e In order to check the property, we need to find the declaration of
each usage of an identifier

Identifier Definition

AST

id declaration

e Name Analysis: making sense of trees; converting them into graphs:
connect identifier uses and declarations

Identifier Mapping

e To make name analysis efficient and clean,
we associate mapping from each identifier to the symbol that the
identifier represents

e We use Map data structures to maintain this mapping

e The rules that specify how declarations are used to construct such
maps are given by “scoping” rules of the programming language

Showing Good Errors with Syntax Trees

w_n

Suppose we have undeclared variable “x” in a program of 100K lines

Which error message would you prefer to see from the compiler?

w_n

- An occurrence of variable “x" not declared (which variable? where?)
- An occurrence of variable “x" in procedure P not declared

- Variable “x" undeclared at line 612, column 21
(and IDE points you there) v/

10

Showing Good Errors with Syntax Trees

e How to emit those good error messages if we only have a syntax
trees?

e Abstract syntax tree nodes store positions within file
e For identifier nodes: allows reporting variable uses
e Variable “x" in line 612, column 21 undeclared

e For other nodes, supports useful for type errors, e.g. could report for
(x +y) » (!b)
- Type error in line 13,
- expression in line 13, column 11-14, has type bool,
expected int instead

11

Showing Good Errors with Syntax Trees

Constructing trees with positions:

e Lexer records positions for tokens

e Each subtree in AST corresponds to some parse tree,
so it has first and last token

e Get positions from those tokens

e Save these positions in the constructed tree

It is important to save information for leaves

e Information for other nodes can often be approximated using
information in the leaves

12

e Scope: The region where an identifier is visible is referred to as the
scope of the identifier

e Here identifier refers to function or variable name

e It is only legal to refer to the identifier within its scope

e Static property: compiler decides the issue at compile time

e Dynamic property: an issue that requires a decision at run-time

e We will study static and dynamic scoping

13

class Example {
boolean x;

int y;
int z;
int compute(int y, int z) {
int x = 3;
return X +y + z;
Iy
public void main() {
int res;
X = true;
int y = 10;
z = b;
res = compute(z-1, z+1);
System.out.println(res);
Iy

e Draw an arrow from
occurrence of each identifier
to the point of its
declaration

14

class Example {
boolean x;
int y;
int z,; <
int compute(int y, int z) {

int x = 3; / ///’

e Draw an arrow from
occurrence of each identifier

+ + z; g .
} return x y 45 to the point of its
public void main () declaration
int res; e Name analysis:
X = true; Computes those arrows
int y = 10;
z = b;
res = compute(z-1, z+1);
System.out.println(res
}

14

Name Analysis Implementation

For each declaration of identifier,
identify where the identifier refers to

Name analysis:
- maps, partial functions (math)
- environments (PL theory)
- symbol table (implementation)

Report some simple semantic errors

We usually introduce symbols for things denoted by identifiers

Symbol tables map identifiers to symbols

15

Static Scoping

class World {
int sum;
int value;

e Static Scoping:
Identifier refers to the symbol that was

void add () { declared “closest” to the place in
sum = sum + value; program structure (thus “static”)
value = 0;
} e We will assume static scoping unless
void main() { otherwise specified
sum = 0;
value = 10;
add () ;
if (sum % 3 == 1) {
int value;
value = 1;
add () ;
println("inner value = " + value);
println("sum = " + sum);
}
println("outer value = " + value);
} 16

Static Scoping

class World {
int sum;
int value;

e Static Scoping:

Identifier refers to the symbol that was

void add () { declared “closest” to the place in
sum = sum + value; program structure (thus “static”)
value = 0;
} e We will assume static scoping unless
void main() { otherwise specified
sum = 0;
value = 10;
add () ;
if (sum % 3 == 1) {
<?nt value;
value = 1;
add () ;
println("inner value = " + value); 1
println("sum = " + sum); 10
}
println("outer value = " + value); O

16

Static Scoping

class World {

int sum;
int value;
void add() {

}

void main() {

e Static Scoping:

Identifier refers to the symbol that was

declared “closest” to the place in
sum = sum + value;

program structure (thus “static”)
value = 0;

e We will assume static scoping unless
otherwise specified

sum = 0; - -
value = 10 ° Pro'perty of static scoping: Given the
add O ; entire program, we can rename
if (sum % 3 == 1) { variables to avoid any shadowing
(int valuel; (make all vars unique)
valuel = 1;
add(); // cannot change valuel
println("inner value = " + valuel); 1
println("sum = " + sum); 10
}
println("outer value = " + value); O

16

Dynamic Scoping

class World ({ e Symbol refers to the variable that was most

int sum; onfl.g .
, recently declared within program execution
int value;

void add() { e Views variable declarations as executable
sum = sum + value; statements that establish which symbol is
value = 0; considered to be the “current one”

}

void main() | - Used in old LISP interpreters

sum = 0; e Translation to normal code: access through a
value = 10; dynamic environment

add () ;

if (sum % 3 == 1) {

int value;

value = 1;
add () ;
println("inner value = " + value); 0
println("sum = " + sum); 11
}
println("outer value = " + value); 0

Dynamic vs. Static Scoping

Dynamic Scoping Implementation:
- Each time a function is called its local variables are pushed on a stack
- When a reference to a variable is made, the stack is searched
top-down for the variable name

Static scoping is almost universally accepted in modern
programming language design

It is usually easier to reason about and easier to compile

Static scoping makes reasoning about modular codes easier:
binding structure can be understood in isolation

18

Exercise

Determine the output of the following program assuming static and
dynamic scoping. Explain the difference, if there is any.
class MyClass{
int x = 5;
public int foo(int z) {
return x + z;
}
public int bar (int y) {
int x = 1;
int z = 2;
return foo(y);
}
public void main () {
int x = 7;
println (foo (bar(3)));

19

