
Handout 3 (Automata)
Every formal language course I know of bombards you first with automata and
then to a much, much smaller extend with regular expressions. As you can see,
this course is turned upside down: regular expressions come first. The reason
is that regular expressions are easier to reason about and the notion of deriva-
tives, although already quite old, only became more widely known rather re-
cently. Still let us in this lecture have a closer look at automata and their relation
to regular expressions. This will help us with understanding why the regular
expression matchers in Python and Ruby are so slow with certain regular ex-
pressions. The central definition is:

A deterministic finite automaton (DFA), say A, is defined by a four-tuple wriĴen
A(Q, q0, F, δ) where

• Q is a finite set of states,

• q0 ∈ Q is the start state,

• F ⊆ Q are the accepting states, and

• δ is the transition function.

The transition function determines how to “transition” from one state to the
next state with respect to a character. We have the assumption that these tran-
sition functions do not need to be defined everywhere: so it can be the case that
given a character there is no next state, in which case we need to raise a kind of
“failure exception”. A typical example of a DFA is

q0start q1

q2 q3

q4
a a

a, b

a
a

b
b

b

b

In this graphical notation, the accepting state q4 is indicatedwith double circles.
Note that there can be more than one accepting state. It is also possible that a
DFA has no accepting states at all, or that the starting state is also an accepting
state. In the case above the transition function is defined everywhere and can
be given as a table as follows:

1

(q0, a) → q1
(q0, b) → q2
(q1, a) → q4
(q1, b) → q2
(q2, a) → q3
(q2, b) → q2
(q3, a) → q4
(q3, b) → q0
(q4, a) → q4
(q4, b) → q4

Weneed to define the notion of what language is accepted by an automaton.
For this we lift the transition function δ from characters to strings as follows:

δ̂(q, []) def
= q

δ̂(q, c :: s) def
= δ̂(δ(q, c), s)

This lifted transition function is often called “delta-hat”. Given a string, we start
in the starting state and take the first character of the string, follow to the next
sate, then take the second character and so on. Once the string is exhausted and
we end up in an accepting state, then this string is accepted by the automaton.
Otherwise it is not accepted. So s is in the language accepted by the automaton
A(Q, q0, F, δ) iff

δ̂(q0, s) ∈ F

I let you think about a definition that describes the set of strings accepted by an
automaton.

While with DFAs it will always be clear that given a character what the next
state is (potentially none), it will be useful to relax this restriction. That means
we have several potential successor states. We even allow “silent transitions”,
also called epsilon-transitions. They allow us to go from one state to the next
without having a character consumed. We label such silent transition with the
leĴer ϵ. The resulting construction is called a non-deterministic finite automaton
(NFA) given also as a four-tuple A(Q, q0, F, ρ) where

• Q is a finite set of states

• q0 is a start state

• F are some accepting states with F ⊆ Q, and

• ρ is a transition relation.

Two typical examples of NFAs are

2

q0start

q1

q2

ϵ

ϵ

a

a

b

r1start

r2

r3
b

a

ϵ a

There are, however, a number of points you should note. Every DFA is a NFA,
but not vice versa. The ρ in NFAs is a transition relation (DFAs have a transition
function). The difference between a function and a relation is that a function
has always a single output, while a relation gives, roughly speaking, several
outputs. Look at the NFA on the right-hand side above: if you are currently in
the state r2 and you read a character a, then you can transition to either r1 or
r3. Which route you take is not determined. This means if we need to decide
whether a string is accepted by aNFA,wemight have to explore all possibilities.
Also there is the special silent transition in NFAs. As mentioned already this
transition means you do not have to “consume” any part of the input string,
but “silently” change to a different state. In the left picture, for example, if you
are in the starting state, you can silently move either to q1 or q2.

Thompson Construction

The reason for introducing NFAs is that there is a relatively simple (recursive)
translation of regular expressions into NFAs. Consider the simple regular ex-
pressions ∅, ϵ and c. They can be translated as follows:

∅ start

ϵ start

c start c

The case for the sequence regular expression r1 · r2 is as follows: We are given
by recursion two automata representing r1 and r2 respectively.

3

r1 r2

start . . . start . . .

The first automaton has some accepting states. We obtain an automaton for
r1 · r2 by connecting these accepting stateswith ϵ-transitions to the starting state
of the second automaton. By doing so we make them non-accepting like so:

r1 · r2

startϵ
ϵ

ϵ

The case for the choice regular expression r1 + r2 is slightly different: We are
given by recursion two automata representing r1 and r2 respectively.

r1

r2

start

start

. . .

. . .

Each automaton has a single start state and potentially several accepting states.
We obtain a NFA for the regular expression r1 + r2 by introducing a new start-
ing state and connecting it with an ϵ-transition to the two starting states above,
like so

4

r1 + r2

start

. . .

. . .

ϵ

ϵ

Finally for the ∗-case we have an automaton for r

r

start . . .

and connect its accepting states to a new starting state via ϵ-transitions. This
new starting state is also an accepting state, because r∗ can recognise the empty
string. This gives the following automaton for r∗:

r∗

start . . .ϵ

ϵ

ϵ

ϵ

This construction of a NFA from a regular expression was invented by Ken
Thompson in 1968.

Subset Construction

What is interesting is that for every NFA we can find a DFA which recognises
the same language. This can, for example, be done by the subset construction.
Consider again the NFA on the left, consisting of nodes labeled 0, 1 and 2.

5

0start

1

2

ϵ

ϵ

a

a

b

nodes a b
∅ ∅ ∅

{0} {0, 1, 2} {2}
{1} {1} ∅
{2}⋆ ∅ {2}

{0, 1} {0, 1, 2} {2}
{0, 2}⋆ {0, 1, 2} {2}
{1, 2}⋆ {1} {2}

s: {0, 1, 2}⋆ {0, 1, 2} {2}

The nodes of the DFA are given by calculating all subsets of the set of nodes of
the NFA (seen in the nodes column on the right). The table shows the transition
function for the DFA. The first row states that ∅ is the sink node which has
transitions for a and b to itself. The next three lines are calculated as follows:

• suppose you calculate the entry for the transition for a and the node {0}

• start from the node 0 in the NFA

• do as many ϵ-transition as you can obtaining a set of nodes, in this case
{0, 1, 2}

• filter out all notes that do not allow an a-transition from this set, this ex-
cludes 2 which does not permit a a-transition

• from the remaining set, do as many ϵ-transition as you can, this yields
{0, 1, 2}

• the resulting set specifies the transition from {0} when given an a

Similarly for the other entries in the rows for {0}, {1} and {2}. The other rows
are calculated by just taking the union of the single node entries. For example
for a and {0, 1}we need to take the union of {0, 1, 2} (for 0) and {1} (for 1). The
starting state of the DFA can be calculated from the starting state of the NFA,
that is 0, and then do as many ϵ-transitions as possible. This gives {0, 1, 2}
which is the starting state of the DFA. The terminal states in the DFA are given
by all sets that contain a 2, which is the terminal state of theNFA. This completes
the subset construction.

There are two points to note: One is that very often the resulting DFA con-
tains a number of “dead” nodes that are never reachable from the starting state
(that is that the calculated DFA in this example is not a minimal DFA). Such
dead nodes can be safely removedwithout changing the language that is recog-
nised by the DFA. Another point is that in some cases, however, the subset con-
struction produces a DFA that does not contain any dead nodes…that means it

6

calculates a minimal DFA. Which in turn means that in some cases the number
of nodes by going from NFAs to DFAs exponentially increases, namely by 2n

(which is the number of subsets you can form for n nodes).

Brzozowski’s Method

As said before, we can also go into the other direction—from DFAs to regular
expressions. Brzozowski’s method calculates a regular expression using famil-
iar transformations for solving equational systems. Consider the DFA:

q0start q1 q2

a

b

b

a
a

b

for which we can set up the following equational system

q0 = ϵ + q0 b + q1 b + q2 b (1)
q1 = q0 a (2)
q2 = q1 a + q2 a (3)

There is an equation for each node in the DFA. Let us have a look how the
right-hand sides of the equations are constructed. First have a look at the sec-
ond equation: the left-hand side is q1 and the right-hand side q0 a. The right-
hand side is essentially all possible ways how to end up in q1. There is only
one incoming edge from q0 consuming an a. Therefore the right hand side is
state followed by character—in this case q0 a. Now lets have a look at the third
equation: there are two incoming edges. Therefore we have two terms, namely
q1 a and q2 a. These terms are separated by +. The first states that if in state
q1 consuming an a will bring you to q2, and the secont that being in q2 and
consuming an a will make you stay in q2. The right-hand side of the first equa-
tion is constructed similarly: there are three incoming edges, therefore there are
three terms. There is one exception in that we also “add” ϵ to the first equation,
because it corresponds to the starting state in the DFA.

Having constructed the equational system, the question is how to solve it?
Remarkably the rules are very similar to solving usual linear equational sys-
tems. For example the second equation does not contain the variable q1 on the
right-hand side of the equation. We can therefore eliminate q1 from the system
by just substituting this equation into the other two. This gives

q0 = ϵ + q0 b + q0 a b + q2 b (4)
q2 = q0 a a + q2 a (5)

7

where in Equation (4) we have two occurences of q0. Like the laws about+ and
·, we can simplify Equation (4) to obtain the following two equations:

q0 = ϵ + q0 (b + a b) + q2 b (6)
q2 = q0 a a + q2 a (7)

Unfortunately we cannot make anymore progress with substituting equations,
because both (6) and (7) contain the variable on the left-hand side also on the
right-hand side. Here we need to now use a law that is different from the usual
laws. It is calledArden’s rule. It states that if an equation is of the form q = q r+ s
then it can be transformed to q = s r∗. Since we can assume + is symmetric,
equation (7) is of that form: s is q0 a a and r is a. That means we can transform
Equation (7) to obtain the two new equations

q0 = ϵ + q0 (b + a b) + q2 b (8)
q2 = q0 a a (a∗) (9)

Now again we can substitute the second equation into the first in order to elim-
inate the variable q2.

q0 = ϵ + q0 (b + a b) + q0 a a (a∗) b (10)

Pulling q0 out as a single factor gives:

q0 = ϵ + q0 (b + a b + a a (a∗) b) (11)

This equation is again of the form so that we can apply Arden’s rule (r is b +
a b + a a (a∗) b and s is ϵ). This gives as solution for q0 the following regular
expression:

q0 = ϵ (b + a b + a a (a∗) b)∗ (12)

SInce this is a regular expression, we can simplify away the ϵ to obtain the
slightly simpler regular expression

q0 = (b + a b + a a (a∗) b)∗ (13)

Now we can unwind this process and obtain the solutions for the other equa-
tions. This gives:

q0 = (b + a b + a a (a∗) b)∗ (14)
q1 = (b + a b + a a (a∗) b)∗ a (15)
q2 = (b + a b + a a (a∗) b)∗ a a (a)∗ (16)

8

Finally, we only need to “add” up the equations which correspond to a ter-
minal state. In our running example, this is just q2. Consequently, a regular
expression that recognises the same language as the automaton is

(b + a b + a a (a∗) b)∗ a a (a)∗

You can somewhat crosscheck your solution by taking a string the regular ex-
pression can match and and see whether it can be matched by the automaton.
One string for example is aaa and voila this string is also matched by the au-
tomaton.

We should prove that Brzozowski’s method really produces an equivalent
regular expression for the automaton. But for the purposes of this module, we
omit this.

Automata Minimization

As seen in the subset construction, the translation of anNFA to aDFA can result
in a rather “inefficient” DFA. Meaning there are states that are not needed. A
DFA can be minimised by the following algorithm:

1. Take all pairs (q, p) with q ̸= p

2. Mark all pairs that accepting and non-accepting states

3. For all unmarked pairs (q, p) and all characters c test whether

(δ(q, c), δ(p, c))

are marked. If there is one, then also mark (q, p).

4. Repeat last step until no change.

5. All unmarked pairs can be merged.

To illustrate this algorithm, consider the following DFA.

q0start q1

q2 q3

q4
a a

a, b

a
a

b
b

b

b

In Step 1 and 2 we consider essentially a triangle of the form

9

q0 q1 q2 q3

q1

q2

q3

q4 ⋆ ⋆ ⋆ ⋆

where the lower row is filled with stars, because in the corresponding pairs
there is always one state that is accepting (q4) and a state that is non-accepting
(the other states).

Now in Step 3 we need to fill in more stars according whether one of the
next-state pairs are marked. We have to do this for every unmarked field until
there is no change anymore. This gives the triangle

q0 q1 q2 q3

q1

q2

q3

q4 ⋆ ⋆ ⋆ ⋆

⋆ ⋆

⋆

⋆

which means states q0 and q2, as well as q1 and q3 can be merged. This gives
the following minimal DFA

q0,2start q1,3 q4

a

b
b

a

a, b

Regular Languages

Given the constructions in the previous sections we obtain the following pic-
ture:

Regexps NFAs DFAs
minimal
DFAs

Thompson’s
construction

subset
construction

minimisation

10

By going from regular expressions over NFAs to DFAs, we can always ensure
that for every regular expression there exists a NFA andDFA that can recognise
the same language. Although we did not prove this fact. Similarly by going
fromDFAs to regular expressions, we canmake sure for every DFA there exists
a regular expression that can recognise the same language. Again we did not
prove this fact.

The interesting conclusion is that automata and regular expressions can
recognise the same set of languages:

A language is regular iff there exists a regular expression that recog-
nises all its strings.

or equivalently

A language is regular iff there exists an automaton that recognises
all its strings.

So for decidingwhether a string is recognised by a regular expression, we could
use our algorithm based on derivatives or NFAs or DFAs. But let us quickly
look at what the differences mean in computational terms. Translating a reg-
ular expression into a NFA gives us an automaton that has O(n) nodes—that
means the size of the NFA grows linearly with the size of the regular expres-
sion. The problem with NFAs is that the problem of deciding whether a string
is accepted is computationally not cheap. Remember with NFAs we have po-
tentially many next states even for the same input and also have the silent ϵ-
transitions. If we want to find a path from the starting state of an NFA to an
accepting state, we need to consider all possibilities. In Ruby and Python this
is done by a depth-first search, which in turn means that if a “wrong” choice is
made, the algorithm has to backtrack and thus explore all potential candidates.
This is exactly the reason why Ruby and Python are so slow for evil regular
expressions. The alternative is to explore the search space in a breadth-first
fashion, but this might incur a memory penalty.

To avoid the problems with NFAs, we can translate them into DFAs. With
DFAs the problem of deciding whether a string is recognised or not is much
simpler, because in each state it is completely determined what the next state
will be for a given input. So no search is needed. The problem with this is
that the translation to DFAs can explode exponentially the number of states.
Therefore when this route is taken, we definitely need tominimise the resulting
DFAs in order to have an acceptable memory and runtime behaviour.

But this does not mean that everything is bad with automata. Recall the
problem of finding a regular expressions for the language that is not recog-
nised by a regular expression. In our implementation we added explicitly such
a regular expressions because they are useful for recognising comments. But in
principle we did not need to. The argument for this is as follows: take a regular
expression, translate it into a NFA and DFA that recognise the same language.
Once you have the DFA it is very easy to construct the automaton for the lan-
guage not recognised by an DFA. If the DAF is completed (this is important!),

11

then you just need to exchange the accepting and non-accepting states. You can
then translate this DFA back into a regular expression.

Not all languages are regular. The most well-known example of a language
that is not regular consists of all the strings of the form

an bn

meaning strings that have the same number of as and bs. You can try, but you
cannot find a regular expression for this language and also not an automaton.
One can actually prove that there is no regular expression nor automaton for
this language, but again that would lead us too far afield for what we want to
do in this module.

12

