Automata and Formal Languages (10)

Email: christian.urban at kcl.ac.uk

Office: S1.27 (1st floor Strand Building)

Slides: KEATS (also home work is there)

There are more problems, than there are programs.

There are more problems, than there are programs.

There must be a problem for which there is no program.

Revision: Proofs

Subsets

$$A \subseteq B$$

$$\forall e.\ e \in A \Rightarrow e \in B$$

Subsets

$$A\subseteq B$$
 and $B\subseteq A$
then $A=B$

Injective Function

f is an injective function iff

$$\forall xy. \ f(x) = f(y) \Rightarrow x = y$$

Cardinality

$$|A| \stackrel{\text{\tiny def}}{=}$$
 "how many elements"

$$A \subseteq B \Rightarrow |A| \le |B|$$

Cardinality

$$|A| \stackrel{\text{\tiny def}}{=}$$
 "how many elements"

$$A \subseteq B \Rightarrow |A| \le |B|$$

if there is an injective function

$$f:A o B$$
 then $|A|\leq |B|$

Natural Numbers

$$\mathbb{N} \stackrel{\text{\tiny def}}{=} \{0,1,2,3,\ldots\}$$

Natural Numbers

$$\mathbb{N} \stackrel{\text{\tiny def}}{=} \{0,1,2,3,\ldots\}$$

$$A$$
 is countable iff $|A|<|\mathbb{N}|$

First Question

$$|\mathbb{N} - \{0\}|$$
 ? $|\mathbb{N}|$

$$>$$
 or $<$ or $=$

 $|\mathbb{N}-\{0,1\}|$? $|\mathbb{N}|$

$$|\mathbb{N} - \{0, 1\}|$$
 ? $|\mathbb{N}|$ $|\mathbb{N} - \mathbb{O}|$? $|\mathbb{N}|$

 $\bigcirc \stackrel{\text{def}}{=} \text{odd numbers} \quad \{1, 3, 5, \dots \}$

$$|\mathbb{N} - \{0, 1\}|$$
 ? $|\mathbb{N}|$ $|\mathbb{N} - \mathbb{O}|$? $|\mathbb{N}|$

 $\mathbb{O} \stackrel{\mathsf{def}}{=} \mathsf{odd} \; \mathsf{numbers} \quad \{1,3,5.....\}$ $\mathbb{E} \stackrel{\mathsf{def}}{=} \mathsf{even} \; \mathsf{numbers} \quad \{0,2,4.....\}$

$$|\mathbb{N} \cup -\mathbb{N}|$$
 ? $|\mathbb{N}|$

```
\mathbb{N}\stackrel{\text{def}}{=} positive numbers \{0,1,2,3,\ldots\}
-\mathbb{N}\stackrel{\text{def}}{=} negative numbers \{0,-1,-2,-3,\ldots\}
```

A is countable if there exists an injective $f:A o \mathbb{N}$

A is uncountable if there does not exist an injective $f:A o \mathbb{N}$

countable: $|A| \leq |\mathbb{N}|$ uncountable: $|A| > |\mathbb{N}|$

A is countable if there exists an injective $f:A o \mathbb{N}$

A is uncountable if there does not exist an injective $f:A o \mathbb{N}$

countable: $|A| \leq |\mathbb{N}|$ uncountable: $|A| > |\mathbb{N}|$

Does there exist such an A?

Halting Problem

Assume a program $oldsymbol{H}$ that decides for all programs $oldsymbol{A}$ and all input data $oldsymbol{D}$ whether

- ullet $H(A,D)\stackrel{\mathsf{def}}{=} 1$ iff A(D) terminates
- $H(A,D) \stackrel{\text{def}}{=} 0$ otherwise

Halting Problem

Given such a program H define the following program C: for all programs A

$$ullet$$
 $C(A)\stackrel{ ext{def}}{=} 0$ iff $H(A,A)=0$

•
$$C(A) \stackrel{\text{def}}{=} 1$$
 otherwise

Halting Problem (2)

Given such a program H define the following program C: for all programs A

- ullet $C(A)\stackrel{ ext{def}}{=} 0$ iff H(A,A)=0
- $C(A) \stackrel{\text{def}}{=} \text{loops}$ otherwise

Contradiction

H(C,C) is either 0 or 1.

$$\bullet \ H(C,C) = 1 \stackrel{\mathsf{def}\,H}{\Rightarrow} C(C) \downarrow \stackrel{\mathsf{def}\,C}{\Rightarrow} H(C,C) = 0$$

$$ullet egin{aligned} ullet H(C,C) &= 0 \overset{\mathsf{def}\,H}{\Rightarrow} C(C) \ \mathsf{loops} \overset{\mathsf{def}\,C}{\Rightarrow} \ H(C,C) &= 1 \end{aligned}$$

Contradiction in both cases. So H cannot exist.