
Automata and
Formal Languages (3)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

(I have put a temporary link in there.)

AFL 03, King’s College London, 10. October 2012 – p. 1/15



Last Week

Last week I showed you

one simple-minded regular expression matcher
(which however does not work in all cases), and

one which works provably in all cases

matcher r s if and only if s ∈ L(r)

AFL 03, King’s College London, 10. October 2012 – p. 2/15



The Derivative of a Rexp

der c (∅) def
= ∅

der c (ε) def
= ∅

der c (d) def
= if c = d then ε else ∅

der c (r1 + r2)
def
= (der c r1) + (der c r2)

der c (r1 · r2)
def
= if nullable r1

then ((der c r1) · r2) + (der c r2)
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

“the regular expression after c has been
recognised”

AFL 03, King’s College London, 10. October 2012 – p. 3/15



For this we defined the set Der c A as

Der c A def
= { s | c::s ∈ A}

which is called the semantic derivative of a set
and proved

L(der c r) = Der c (L(r))

AFL 03, King’s College London, 10. October 2012 – p. 4/15



The Idea of the Algorithm

If we want to recognise the string abc with
regular expression r then

1 Der a (L(r))

2 Der b (Der a (L(r)))
3 Der c (Der b (Der a (L(r))))
4 finally we test whether the empty string is in set

The matching algorithm works similarly, just over
regular expression than sets.

AFL 03, King’s College London, 10. October 2012 – p. 5/15



The Idea of the Algorithm

If we want to recognise the string abc with
regular expression r then

1 Der a (L(r))
2 Der b (Der a (L(r)))
3 Der c (Der b (Der a (L(r))))

4 finally we test whether the empty string is in set

The matching algorithm works similarly, just over
regular expression than sets.

AFL 03, King’s College London, 10. October 2012 – p. 5/15



The Idea of the Algorithm

If we want to recognise the string abc with
regular expression r then

1 Der a (L(r))
2 Der b (Der a (L(r)))
3 Der c (Der b (Der a (L(r))))
4 finally we test whether the empty string is in set

The matching algorithm works similarly, just over
regular expression than sets.

AFL 03, King’s College London, 10. October 2012 – p. 5/15



The Idea of the Algorithm

If we want to recognise the string abc with
regular expression r then

1 Der a (L(r))
2 Der b (Der a (L(r)))
3 Der c (Der b (Der a (L(r))))
4 finally we test whether the empty string is in set

The matching algorithm works similarly, just over
regular expression than sets.

AFL 03, King’s College London, 10. October 2012 – p. 5/15



Input: string abc and regular expression r
1 der a r
2 der b (der a r)
3 der c (der b (der a r))

4 finally check whether the latter regular
expression can match the empty string

AFL 03, King’s College London, 10. October 2012 – p. 6/15



Input: string abc and regular expression r
1 der a r
2 der b (der a r)
3 der c (der b (der a r))
4 finally check whether the latter regular

expression can match the empty string

AFL 03, King’s College London, 10. October 2012 – p. 6/15



We need to prove

L(der c r) = Der c (L(r))

by induction on the regular expression.

AFL 03, King’s College London, 10. October 2012 – p. 7/15



Proofs about Rexp

P holds for ∅, ε and c

P holds for r1 + r2 under the assumption that P
already holds for r1 and r2.

P holds for r1 · r2 under the assumption that P
already holds for r1 and r2.
P holds for r∗ under the assumption that P
already holds for r.

AFL 03, King’s College London, 10. October 2012 – p. 8/15



Proofs about Natural Numbers
and Strings

P holds for 0 and
P holds for n + 1 under the assumption that P
already holds for n

P holds for "" and
P holds for c ::s under the assumption that P
already holds for s

AFL 03, King’s College London, 10. October 2012 – p. 9/15



Regular Expressions

r ::= ∅ null
| ε empty string / "" / []
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

AFL 03, King’s College London, 10. October 2012 – p. 10/15



Regular Expressions

r ::= ∅ null
| ε empty string / "" / []
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

AFL 03, King’s College London, 10. October 2012 – p. 10/15



Languages

A language is a set of strings.

A regular expression specifies a set of strings or
language.

A language is regular iff there exists a regular
expression that recognises all its strings.

not all languages are regular, e.g. anbn.

AFL 03, King’s College London, 10. October 2012 – p. 11/15



Languages

A language is a set of strings.

A regular expression specifies a set of strings or
language.

A language is regular iff there exists a regular
expression that recognises all its strings.

not all languages are regular, e.g. anbn.

AFL 03, King’s College London, 10. October 2012 – p. 11/15



Regular Expressions

r ::= ∅ null
| ε empty string / "" / []
| c character
| r1 · r2 sequence
| r1 + r2 alternative / choice
| r∗ star (zero or more)

How about ranges [a-z], r+ and !r?

AFL 03, King’s College London, 10. October 2012 – p. 12/15



Negation of Regular Expr’s

!r (everything that r cannot recognise)

L(!r) def
= UNIV - L(r)

nullable (!r) def
= not (nullable(r))

der c (!r) def
= !(der c r)

AFL 03, King’s College London, 10. October 2012 – p. 13/15



Regular Exp’s for Lexing
Lexing separates strings into “words” /
components.

Identifiers (non-empty strings of letters or
digits, starting with a letter)
Numbers (non-empty sequences of digits omitting
leading zeros)
Keywords (else, if, while, . . . )
White space (a non-empty sequence of blanks,
newlines and tabs)
Comments

AFL 03, King’s College London, 10. October 2012 – p. 14/15



Automata

A deterministic finite automaton consists of:

a set of states
one of these states is the start state
some states are accepting states, and
there is transition function
which takes a state as argument and a character and
produces a new state
this function might not always be defined

AFL 03, King’s College London, 10. October 2012 – p. 15/15


