Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk
Slides & Progs: KEATS (also homework is there)

1 Introduction, Languages
2 Regular Expressions, Derivatives

4 Lexing, Tokenising

5 Grammars, Parsing

6 While-Language

7 Compilation, JVM

8 Compiling Functional Languages
9 Optimisations

10 LLVM

(Basic) Regular Expressions

r u= 0 nothing
|1 empty string /" / ||
| ¢ character
| rnn sequence
| r+n alternative / choice
a star (zero or more)

How about ranges [a-z], r* and ~ r? Do they
increase the set of languages we can recognise?

Negation

Assume you have an alphabet consisting of the
letters a, b and ¢ only. Find a (basic!) regular
expression that matches all strings except ab and ac!

Automata

A deterministic finite automaton, DFA, consists of:
an alphabet X
a set of states Qs
one of these states is the start state Q,
some states are accepting states F, and
there is transition function ¢
which takes a state as argument and a character and

produces a new state; this function might not be everywhere
defined = partial function

A(Zr QS/ QO/ F/ (S)

a a
start —{ Qy —>{ Q; —— Q4 o ab

N

bCQ2—>Q3

the start state can be an accepting state
it is possible that there is no accepting state

all states might be accepting (but this does not
necessarily mean all strings are accepted)

for this automaton ¢ is the function

(QOIC’> — Q (Qwa) — Q4 (Q4,a) — Q4

(Qo,b) = Q, (Qi,b) = Q, (Qub) — Q™

Accepting a String

Given
A(ZI QS/ QOI F/ 5)
you can define
sl =a
5(Qc:s) =6(6(Qc),s)

Accepting a String

Given

A(Z/ QS/ QO/ F/ 5)

you can define

~

Q) =Q

-~

5(Qc:s) £5(5(Qc),s)

Whether a string s is accepted by A?

-~

5(Q0/S> S F

Regular Languages

A language is a set of strings.
A regular expression specifies a language.

A language is regular iff there exists a regular
expression that recognises all its strings.

Regular Languages

A language is a set of strings.
A regular expression specifies a language.
A language is regular iff there exists a regular

expression that recognises all its strings.

not all languages are regular, e.g. a"b" is not

Regular Languages (2)
A language is regular iff there exists a regular
expression that recognises all its strings.
or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Non-Deterministic

Finite Automata
N(Z,Qs,Qso, F, p)

A non-deterministic finite automaton (NFA) consists
of:

a finite set of states, Qs

some these states are the start states, Qsg
some states are accepting states, and
there is transition relation, p

(Qwa) —Q
(Qa) > Q

Non-Deterministic

Finite Automata
N(Z,Qs,Qso, F, p)

A non-deterministic finite automaton (NFA) consists
of:

a finite set of states, Qs

some these states are the start states, Qsg
some states are accepting states, and
there is transition relation, p

(Qa) - Q

(Qa) > Q (Qi,a) = {Q,Q}

An NFA Example

Another Example

For the regular expression (.*)a (.{"})bc

*
Start... O~ *bc
- g y

n

Note the star-transitions: accept any character.

Two Epsilon NFA Examples

Thompson: Rexp to eNFA

Caseri-r

By recursion we are given two automata:

rq 5)

start © start _>O ©

Start PRy © PRy ©
start © start —>O ©

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via e-transitions to the starting state of the second
automaton.

Caseri-r

By recursion we are given two automata:

ri-r

start e ©
start o .. P ©
start - ©

We need to (1) change the accepting nodes of the first
automaton into non-accepting nodes, and (2) connect them
via e-transitions to the starting state of the second
automaton.

Caser1+nr

By recursion we are given two automata:
I

Ve

start —{) O

start —{) ®

A

rp

O
start o O
O

We can just put both automata together.

Caser1+nr

By recursion we are given two automata:
rq + ry

start —{) O

start —{) O

start —) -+ ()
\ O

We can just put both automata together.

Caser”™

By recursion we are given an automaton for r:

start —{) O

start —{) O

Caser”™

By recursion we are given an automaton for r:

Caser”™

By recursion we are given an automaton for r:

start

Why can'’t we just have an epsilon transition from
the accepting states to the starting state?

NFA Breadth-First: a’ 11} .qin}

—o—Python
— Ruby
——my NFA

time in secs

as

NFA Breadth-First:(a™)™ - b

time in secs

—o—Java 8
—o—Python
—o—JavaScript
—o— Swift
—o—Dart
——my NFA

10 20 30 40 50 60 70 80 90 100
as

NFA Depth-First: a’in} . gin}

time in secs

30 |
25 |
20 |
15 |
10 |

as

—o—Python
—o Ruby
——my NFA

NFA Depth-First: (a™)™ - b

—o—Java 8
—o—Python
—o—JavaScript
—o— Swift
—o-Dart
——my NFA

time in secs

The punchline is that many existing libraries do
depth-first search in NFAs (with backtracking).

Subset Construction

nodes

{1}

{o}
{1}
{2}
{o,1}
{o,2}
{1,2}
{0,1,2}

Subset Construction

nodes

{1}

{o}
{1}
{2}
{o,1}
{o,2}
{1,2}
{0,1,2}

Subset Construction

nodes 0 1
{0
{o} | {o} {o1}
{1} | {2+ {2}
{2} | {+ {}
{o,1}
{o,2}
{1,2}
{0,1,2}

Subset Construction

nodes 0 1
040
{o} | {o} {o1}
{1t | {2+ {2}
{2v | {+ {}
{0,1} |{0,2} {o,1,2}
{o,2} | {o} {o,1}
{1,2} | {2} {2}
{0,1,2} |{0,2} {o,1,2}

Subset Construction

nodes 0 1
040
s.{ot | {o} {o1}
{1t | {2+ {2}
{2} {+ {}

{0,1} |{0,2} {o,1,2}

{o,2}*| {o} {o,1}

{1,2}*] {2} {2}
{0,1,2} *| {0,2} {o0,1,2}

The Result

Removing Dead States

DFA: (original) NFA:

start @ 0,1

1

0,1

Subset Construction (NFA)

nodes a

{}

{o}
{1}
{2}
{o,1}
{0,2}
{1,2}
{0,1,2}

Subset Construction (NFA)

nodes a

{} {}

{o}
{1}
{2}
{o,1}
{0,2}
{1,2}
{0,1,2}

Subset Construction (NFA)

nodes

a b
{} {r {}
{o} |{o0,1,2} {2}
{1} {1t {}
{2} {+ {2}
{o,1}
{0,2}
{1,2}
{0,1,2}

Subset Construction (NFA)

nodes a b
{} {r {}
{o} |{o0,1,2} {2}
{1} {1t {}
{2} {+ {2}
{0,171} | {o,1,2} {2}
{0,2} |{o0,1,2} {2}
{1.2} | {1} {2}
{0,1,2} |{o0,1,2} {2}

Subset Construction (NFA)

nodes a b
{} {+ {}
{o} |{o0,1,2} {2}

{1} {1t {}
{2} {+ {2}
{0,171} | {o,1,2} {2}
{0,2}*]{0,1,2} {2}
{L2}* {1} {2}
s:{0,1,2}* | {0,1,2} {2}

The Result

DFA:

Removing Dead States

(original) NFA:

Regexps and Automata

Thompson'’s subset
construction construction

Regexps mmlp NFAs =y DFAs

Regexps and Automata

Thompson'’s subset
construction construction

Regexps musp NFAs mufp DFAs mup mli)nFip:al

minimisation

DFA Minimisation

1. Take all pairs (g, p) withg # p
. Mark all pairs that accepting and non-accepting
states

. For all unmarked pairs (g, p) and all characters ¢
test whether

(6(q,¢),0(p,c))

are marked. If yes in at least one case, then also

mark (g, p).
. Repeat last step until no change.

. All unmarked pairs can be merged.

start —>{ Q, —> Q, —> Q4 ab

\jb fa

bCQ2_>Q3
b

Q

Q,

Q;

Qx| *x|*x]|x*

Q Q Q Q

start —{ Qg LN Q N Q4 o ab

Q| x
N e fe NEE

bCQ2_>Q3 Q3* *
Qi x| **1*
> ONONeN R
ab

; ¢

= a
start —{ Qg Qs — Q4
S

U b

b

Alternatives)

exchange initial / accepting states

Alternatiygs

start

exchange initial / accepting states

reverse all edges

Alternatiyegs

start

exchange initial / accepting states
reverse all edges

subset construction = DFA

Alternati\a/%s

start

exchange initial / accepting states
reverse all edges
subset construction = DFA

remove dead states

Alternati\a/%s

start

exchange initial / accepting states
reverse all edges

subset construction = DFA
remove dead states

repeat once more

Alternati\a/%s

start

exchange initial / accepting states
reverse all edges

subset construction = DFA
remove dead states

repeat once more = minimal DFA

Regexps and Automata

Thompson'’s subset
construction construction

Regexps é NFAs é DFAs é mli)nFi;al

minimisation

Regexps and Automata

Thompson'’s subset
construction construction

Regexps é NFAs é DFAs é mli)nFi;al

\/ minimisation

DFA to Rexp

a
o — @O T
b b

start

start

You know how to solve since school days, no?

Qy = 2Q+3Q; +4Q,
Q =2Q+3Q; +1Q,
Q = 1Q +5Q +2Q,

start

a
w— @D

Q = Qob+Q1b+Q2b+1
Q = Qa
Q = Qa+Qa

substitute Q; into Q, & Q,:
QO Q0b+Qoab+Q2b+1
Q, =Qaa+Q,a

Q = Qob+Q1b+Q2b+1
Q = Qa
Q = Qa+Qa

substitute Q; into Q, & Q,:
QO Q0b+Qoab+Q2b+1
Q, =Qaa+Q,a Q,

simplifying Q:
Q=Qy(b+ab)+Q,b+1
Q =Qaa+Qa

Q = Qob+Q1b+Q2b+1
Q = Qa
Q = Qa+Qa

substitute Q; into Q, & Q,:
QO Q0b+Qoab+Q2b+1
Q, =Qaa+Q,a Q,

simplifying Q:
Qo =Q(b+ab)+Qb+1
Q =Qaa+Qa

Q) = Qb+ Qb+Qb+1
Q = Qpa

Arden’s Lemma:

Ifg =qr+s then g =sr*

substitute Q; into Q, & Q,:
QO Q0b+Qoab+Q2b+1
Q, =Qaa+Q,a Q,

simplifying Q:
Qo =Q(b+ab)+Qb+1
Q =Qaa+Qa

Arden for Q,:
Q=Q(b+ab)+Qb+1
Q, = Qaa(a*)

Q= Qoa

Arden’s Lemma:

Ifg =qr+s then g =sr*

substitute Q; into Q, & Q,:
QO Q0b+Qoab+Q2b+1
Q, =Qaa+Q,a Q, a

simplifying Q:
Q=Qy(b+ab)+Q,b+1
Q =Qyaa+ Qa

Arden for Q,:
Q =Qy(b+ab)+Qb+1
Q, =Qpaa(a”)

2 Substitute Q, and simplify:
Q =Qy(b+ab+aa(a*)b)+1

substitute Q; into Q, & Q,:
QO Q0b+Qoab+Q2b+1
Q, =Qaa+Q,a Q, a

simplifying Q:
Q=Qy(b+ab)+Q,b+1
Q =Qyaa+ Qa

Arden’s Lemma;:

Ifg=qr+s then g =sr*

< Substitute Q, and simplify:
Q o Q=Qy(b+ab+aa(a*)b)+1

Arden again for Q:
Q = (b+ab+aa(a*)b)*

substitute Q; into Q, & Q,:
QO Q0b+Qoab+Q2b+1
Q, =Qaa+Q,a Q a
2

simplifying Q:
Qo =Q(b+ab)+Qb+1
Q =Qaa+Qa

Arden for Q,:
Q=Q(b+ab)+Qb+1
Q, = Qaa(a*)

o8
Q,

Substitute

_ Finally:
Q=% Q= (b+ab+aa(a*)b)*

Q =(b+ab+aa(a*)b)*a
Q= (b+ab+aa(a*)b)*aa(a*)

a
- — @D @

Q = Qob+Q1b+Q2b+1
Q = Qa

Q, = Q,a+ { Finally:
Q= (b+ab+aa(a*)b)*
Q =(b+ab+aa(a*)b)*a
Q= (b+ab+aa(a*)b)*aa(a*)

Regexps and Automata

Thompson'’s subset
construction construction

Regexps é NFAs é DFAs é mli)nFi;al

\/ minimisation

Regular Languages (3)

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Regular Languages (3)

A language is regular iff there exists a regular
expression that recognises all its strings.

or equivalently

A language is regular iff there exists a deterministic
finite automaton that recognises all its strings.

Why is every finite set of strings a regular language?

Regexps and Automata

Thompson’s subset
construction construction

inimal
Regexps —) NFAs —) DFAs m[')nF'Za

v minimisation

Brzozowski’s
method

Regular Languages

Two equivalent definitions:

Alanguage is regular iff there exists a regular expres-
sion that recognises all its strings.

A language is regular iff there exists an automaton
that recognises all its strings.

for example a"b" is not regular

Negation

Regular languages are closed under negation:

start

But requires that the automaton is completed!

Negation

Regular languages are closed under negation:

start

But requires that the automaton is completed!

CFL 03, King's College London — p. 41/44

CFL 03, King's College London — p. 41/44

CFL 03, King's College London — p. 41/44

CFL 03, King's College London — p. 41/44

CFL 03, King's College London — p. 41/44

CFL 03, King's College London — p. 41/44

CFL 03, King's College London — p. 41/44

CFL 03, King's College London — p. 41/44

CFL 03, King's College London — p. 41/44

CFL 03, King's College London — p. 41/44

CFL 03, King's College London — p. 41/44

CFL 03, King's College London — p. 41/44

CFL 03, King's College London — p. 41/44

CFL 03, King's College London — p. 41/44

CFL 03, King's College London — p. 41/44

| always thought dfa’s needed a transition for
each state for each character, and if not it would
be an nfa not a dfa. Is there an example that dis-
proves this?

CFL 03, King's College London — p. 43/44

CFL 03, King's College London — p. 43/44

CFL 03, King's College London — p. 43/44

CFL 03, King's College London — p. 43/44

CFL 03, King's College London — p. 43/44

CFL 03, King's College London — p. 43/44

CFL 03, King's College London — p. 43/44

CFL 03, King's College London — p. 43/44

CFL 03, King's College London — p. 43/44

CFL 03, King's College London — p. 43/44

CFL 03, King's College London — p. 43/44

CFL 03, King's College London — p. 43/44

Do the regular expression matchers in Python
and Java 8 have more features than the one im-
plemented in this module? Or is there another
reason for their inefficiency?

