
Automata and
Formal Languages (1)

Antikythera automaton, 100 BC (Archimedes?)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS

AFL 01, King’s College London, 26. September 2012 – p. 1/16



AFL 01, King’s College London, 26. September 2012 – p. 2/16

Server

GET request

webpage

POST data Browser



AFL 01, King’s College London, 26. September 2012 – p. 2/16

Server

GET request

webpage

POST data Browser

programming languages, compilers



transforming strings into structured data

Lexing
(recognising “words”)

Parsing
(recognising “sentences”)

AFL 01, King’s College London, 26. September 2012 – p. 3/16



The subject is quite old:

Turing Machines, 1936
first compiler for COBOL, 1957 (Grace Hopper)
but surprisingly research papers are still
published now

Grace Hopper

(she made it to David Letterman’s Tonight Show,

http://www.youtube.com/watch?v=aZOxtURhfEU)

AFL 01, King’s College London, 26. September 2012 – p. 4/16

http://www.youtube.com/watch?v=aZOxtURhfEU


This Course

regular expression / regular expression matching
a bit of sets (of strings)
automata
the Myhill-Nerode theorem
parsing
grammars
a small interpreter / webbrowser

AFL 01, King’s College London, 26. September 2012 – p. 5/16



This Course

the ultimate goal is to implement a small
web-browser (really small)

Let’s start with:

a web-crawler
an email harvester
a web-scraper

AFL 01, King’s College London, 26. September 2012 – p. 6/16



A Web Crawler

1 given an URL, read the corresponding webpage
2 extract all links from it
3 call the web-crawler again for all these links

AFL 01, King’s College London, 26. September 2012 – p. 7/16



A Web Crawler

1 given an URL, read the corresponding webpage
2 if not possible print, out a problem
3 if possible, extract all links from it
4 call the web-crawler again for all these links

(we need to bound the number of recursive calls)
(the purpose is to check all links on my own webpage)

AFL 01, King’s College London, 26. September 2012 – p. 8/16



A Web Crawler

1 given an URL, read the corresponding webpage
2 if not possible print, out a problem
3 if possible, extract all links from it
4 call the web-crawler again for all these links

(we need to bound the number of recursive calls)
(the purpose is to check all links on my own webpage)

AFL 01, King’s College London, 26. September 2012 – p. 8/16



Scala
a simple Scala function for reading webpages

1 import io.Source
2

3 def get_page(url: String) : String = {
4 Source.fromURL(url).take(10000).mkString
5

6 get_page("""http://www.inf.kcl.ac.uk/staff/urbanc/""")

slightly more complicated for handling errors:
1 def get_page(url: String) : String = {
2 try {
3 Source.fromURL(url).take(10000).mkString
4 }
5 catch {
6 case e => {
7 println(" Problem with: " + url)
8 ""
9 }

10 }
11 }

AFL 01, King’s College London, 26. September 2012 – p. 9/16



Scala
a simple Scala function for reading webpages

1 import io.Source
2

3 def get_page(url: String) : String = {
4 Source.fromURL(url).take(10000).mkString
5

6 get_page("""http://www.inf.kcl.ac.uk/staff/urbanc/""")

slightly more complicated for handling errors:
1 def get_page(url: String) : String = {
2 try {
3 Source.fromURL(url).take(10000).mkString
4 }
5 catch {
6 case e => {
7 println(" Problem with: " + url)
8 ""
9 }

10 }
11 }

AFL 01, King’s College London, 26. September 2012 – p. 9/16



AFL 01, King’s College London, 26. September 2012 – p. 10/16



Cookies

AFL 01, King’s College London, 26. September 2012 – p. 11/16

Servers from
Dot.com Inc. GET request

read a cookie

Client



Cookies

AFL 01, King’s College London, 26. September 2012 – p. 11/16

Servers from
Dot.com Inc. GET request

read a cookie

Client



Cookies

AFL 01, King’s College London, 26. September 2012 – p. 11/16

Servers from
Dot.com Inc. webpage

write a cookie

Client



Cookies

AFL 01, King’s College London, 26. September 2012 – p. 11/16

Servers from
Dot.com Inc. webpage

write a cookie

Client

cookies: max 4KB data
cookie theft, cross-site scripting attacks
session cookies, persistent cookies, HttpOnly cookies,
third-party cookies, zombie cookies



Cookies

AFL 01, King’s College London, 26. September 2012 – p. 11/16

Servers from
Dot.com Inc. webpage

write a cookie

Client

cookies: max 4KB data
cookie theft, cross-site scripting attacks
session cookies, persistent cookies, HttpOnly cookies,
third-party cookies, zombie cookies

EU Privacy Directive about Cookies:
“In May 2011, a European Union law was passed stating
that websites that leave non-essential cookies on
visitors’ devices have to alert the visitor and get
acceptance from them. This law applies to both
individuals and businesses based in the EU regardless of
the nationality of their website’s visitors or the location
of their web host. It is not enough to simply update a
website’s terms and conditions or privacy policy. The
deadline to comply with the new EU cookie law was 26th
May 2012 and failure to do so could mean a fine of up to
£500,000.” →BBC News



While cookies are per web-page, this can be
easily circumvented.

AFL 01, King’s College London, 26. September 2012 – p. 12/16

Pet Store
Dot.com

Dating.com
Evil-Ad-No
Privacy.com

you



My First Webapp

GET request:
1 read the cookie from client
2 if none is present, set visits to 0
3 if cookie is present, extract visits counter
4 if visits is greater or equal 10,

print a valued customer message
otherwise just a normal message

5 increase visits by 1 and store new cookie with
client

AFL 01, King’s College London, 26. September 2012 – p. 13/16



cookie value encoded as hash

AFL 01, King’s College London, 26. September 2012 – p. 14/16



Exam

The question “Is this relevant for the exams?” is
not appreciated!

Whatever is in the homework sheets (and is not
marked optional) is relevant for the exam.
No code needs to be written.

AFL 01, King’s College London, 26. September 2012 – p. 15/16



Maps in Scala
map takes a function, say f, and applies it to
every element of the list:

AFL 01, King’s College London, 26. September 2012 – p. 16/16

List(1, 2, 3, 4, 5, 6, 7, 8, 9)

List(1, 4, 9, 16, 25, 36, 49, 64, 81)


