
Handout 2

Having specified what problem our matching algorithm, match, is supposed to
solve, namely for a given regular expression r and string s answer true if and
only if

s ∈ L(r)

Clearly we cannot use the function L directly in order to solve this problem,
because in general the set of strings L returns is infinite (recall what L(a∗) is).
In such cases there is no algorithm then can test exhaustively, whether a string
is member of this set.

The algorithm we define below consists of two parts. One is the function
nullable which takes a regular expression as argument and decides whether it
can match the empty string (this means it returns a boolean). This can be easily
defined recursively as follows:

nullable(∅)
def
= false

nullable(ϵ)
def
= true

nullable(c)
def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗)
def
= true

The idea behind this function is that the following property holds:

nullable(r) if and only if ”” ∈ L(r)

On the left-hand side we have a function we can implement; on the right we
have its specification.

The other function is calculating a derivative of a regular expression. This
is a function which will take a regular expression, say r, and a character, say
c, as argument and return a new regular expression. Beware that the intuition
behind this function is not so easy to grasp on first reading. Essentially this
function solves the following problem: if r can match a string of the form c ::s,
what does the regular expression look like that can match just s. The definition
of this function is as follows:

der c (∅)
def
= ∅

der c (ϵ)
def
= ∅

der c (d)
def
= if c = d then ϵ else ∅

der c (r1 + r2)
def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗)
def
= (der c r) · (r∗)

1

The first two clauses can be rationalised as follows: recall that der should calcu-
late a regular expression, if the “input” regular expression can match a string of
the form c ::s. Since neither ∅ nor ϵ can match such a string we return ∅. In the
third case we have to make a case-distinction: In case the regular expression
is c, then clearly it can recognise a string of the form c :: s, just that s is the
empty string. Therefore we return the ϵ-regular expression. In the other case
we again return ∅ since no string of the c :: s can be matched. The +-case is
relatively straightforward: all strings of the form c ::s are either matched by the
regular expression r1 or r2. So we just have to recursively call der with these
two regular expressions and compose the results again with +. The ·-case is
more complicated: if r1 · r2 matches a string of the form c ::s, then the first part
must be matched by r1. Consequently, it makes sense to construct the regular
expression for s by calling der with r1 and “appending” r2. There is however
one exception to this simple rule: if r1 can match the empty string, then all of
c :: s is matched by r2. So in case r1 is nullable (that is can match the empty
string) we have to allow the choice der c r2 for calculating the regular expres-
sion that can match s. The ∗-case is again simple: if r∗ matches a string of the
form c ::s, then the first part must be “matched” by a single copy of r. Therefore
we call recursively der c r and “append” r∗ in order to match the rest of s.

Another way to rationalise the definition of der is to consider the following
operation on sets:

Der cA
def
= {s | c ::s ∈ A}

which essentially transforms a set of strings A by filtering out all strings that
do not start with c and then strip off the c from all the remaining strings. For
example suppose A = {”foo”, ”bar”, ”frak”} then

Der f A = {”oo”, ”rak”} , Der bA = {”ar”} and Der aA = ∅

Note that in the last case Der is empty, because no string in A starts with a.
With this operation we can state the following property about der:

L(der c r) = Der c (L(r))

This property clarifies what regular expression der calculates, namely take the
set of strings that r can match (L(r)), filter out all strings not starting with c
and strip off the c from the remaining strings—this is exactly the language that
der c r can match.

For our matching algorithm we need to lift the notion of derivatives from
characters to strings. This can be done using the following function, taking a
string and regular expression as input and a regular expression as output.

ders [] r
def
= r

ders (c ::s) r
def
= ders s (der c r)

Having ders in place, we can finally define our matching algorithm:

2

match s r = nullable(ders s r)

We claim that

match s r if and only if s ∈ L(r)

holds, which means our algorithm satisfies the specification. This algorithm was
introduced by Janus Brzozowski in 1964. Its main attractions are simplicity and
being fast, as well as being easily extendable for other regular expressions such
as r{n}, r?, ∼ r and so on.

3

1 def nullable (r: Rexp) : Boolean = r match {

2 case NULL => false

3 case EMPTY => true

4 case CHAR(_) => false

5 case ALT(r1 , r2) => nullable(r1) || nullable(r2)

6 case SEQ(r1 , r2) => nullable(r1) && nullable(r2)

7 case STAR(_) => true

8 }

1 def der (r: Rexp , c: Char) : Rexp = r match {

2 case NULL => NULL

3 case EMPTY => NULL

4 case CHAR(d) => if (c == d) EMPTY else NULL

5 case ALT(r1 , r2) => ALT(der(r1, c), der(r2 , c))

6 case SEQ(r1 , r2) =>

7 if (nullable(r1)) ALT(SEQ(der(r1, c), r2), der(r2 , c))

8 else SEQ(der(r1 , c), r2)

9 case STAR(r) => SEQ(der(r, c), STAR(r))

10 }

11

12 def ders (s: List[Char], r: Rexp) : Rexp = s match {

13 case Nil => r

14 case c::s => ders(s, der(c, r))

15 }

Figure 1: Scala implementation of the nullable and derivatives functions.

4

