Compilers and Formal Languages (10)

Email: christian.urban at kcl.ac.uk

Office Hours: Thursdays 12 – 14

Location: N7.07 (North Wing, Bush House)

Slides & Progs: KEATS (also homework is there)

```
def fact(n: Int) : Int = {
  if (n == 0) 1 else n * fact(n - 1)
def factC(n: Int, ret: Int => Int) : Int = {
  if (n == 0) ret(1)
  else factC(n - 1, x \Rightarrow ret(n * x))
fact(10)
factC(10, identity)
```

```
def fibC(n: Int, ret: Int => Int) : Int = {
   if (n == 0 || n == 1) ret(1) else
   fibC(n - 1,
        r1 => fibC(n - 2,
        r2 => ret(r1 + r2)))
}
fibC(10, identity)
```

Are there more strings in

$$L(a^*) \text{ or } L((a+b)^*)$$
?

Can you remember this HW?

- (1) How many basic regular expressions are there to match the string *abcd*?
- (2) How many if they cannot include 1 and 0?
- (3) How many if they are also not allowed to contain stars?
- (4) How many if they are also not allowed to contain _ + _?

There are more problems, than there are programs.

There are more problems, than there are programs.

There must be a problem for which there is no program.

Subsets

If $A \subseteq B$ then A has fewer or equal elements than B

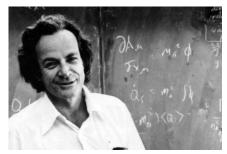
$$A \subseteq B$$
 and $B \subseteq A$

then
$$A == B$$

3 elements

Newton vs Feynman

classical physics



quantum physics

The Goal of the Talk

 show you that something very unintuitive happens with very large sets

 convince you that there are more problems than programs

$$B = \{ \bigcirc, \bigcirc, \bigcirc, \bigcirc, \bigcirc \}$$

$$A = \{ @, @, @ \}$$

$$|A| = 5, |B| = 3$$

$$B = \{ 0, 0, 0, 0, 0 \}$$

$$A = \{ 0, 0, 0 \}$$

then
$$|A| \leq |B|$$

for = has to be a **one-to-one** mapping

Cardinality

 $|A| \stackrel{\text{\tiny def}}{=}$ "how many elements"

$$A \subseteq B \Rightarrow |A| \leq |B|$$

Cardinality

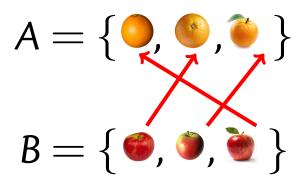
$$|A| \stackrel{\text{\tiny def}}{=}$$
 "how many elements"

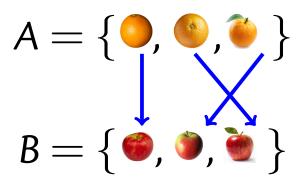
$$A \subseteq B \Rightarrow |A| \leq |B|$$

if there is an injective function

$$f: A \rightarrow B$$
 then $|A| \leq |B|$

$$\forall xy. f(x) = f(y) \Rightarrow x = y$$





$$A = \{ \bigcirc, \bigcirc, \bigcirc \}$$
 $B = \{ \bigcirc, \bigcirc, \bigcirc \}$

then
$$|A| = |B|$$

Natural Numbers

$$\mathbb{N} \stackrel{\text{\tiny def}}{=} \{0, 1, 2, 3, \dots \}$$

Natural Numbers

$$\mathbb{N} \stackrel{\text{\tiny def}}{=} \{0, 1, 2, 3, \dots \}$$

A is countable iff
$$|A| \leq |\mathbb{N}|$$

First Question

$$|\mathbb{N} - \{0\}|$$
 ? $|\mathbb{N}|$

$$>$$
 or $<$ or $=$?

First Question

$$|\mathbb{N} - \{0\}|$$
 ? $|\mathbb{N}|$

$$\geq$$
 or \leq or $=$?

$$x \mapsto x + 1$$
,
 $|\mathbb{N} - \{0\}| = |\mathbb{N}|$

 $|\mathbb{N} - \{0, 1\}|$? $|\mathbb{N}|$

$$|\mathbb{N} - \{0, 1\}|$$
 ? $|\mathbb{N}|$
 $|\mathbb{N} - \mathbb{O}|$? $|\mathbb{N}|$

$$\bigcirc \stackrel{\text{def}}{=} \text{odd numbers} \quad \{1, 3, 5, \dots \}$$

$$|\mathbb{N} - \{0, 1\}|$$
 ? $|\mathbb{N}|$ $|\mathbb{N} - \mathbb{O}|$? $|\mathbb{N}|$ $\mathbb{O} \stackrel{\text{def}}{=} \text{ odd numbers } \{1, 3, 5.....\}$

 $\mathbb{E} \stackrel{\text{def}}{=} \text{even numbers} \quad \{0, 2, 4, \dots\}$

$|\mathbb{N} \cup -\mathbb{N}|$? $|\mathbb{N}|$

```
\mathbb{N} \stackrel{\text{def}}{=} \text{ positive numbers } \{0, 1, 2, 3, \dots\}

-\mathbb{N} \stackrel{\text{def}}{=} \text{ negative numbers } \{0, -1, -2, -3, \dots\}
```

A is countable if there exists an injective $f: A \rightarrow \mathbb{N}$

A is uncountable if there does not exist an injective $f: A \rightarrow \mathbb{N}$

countable: $|A| \leq |\mathbb{N}|$ uncountable: $|A| > |\mathbb{N}|$

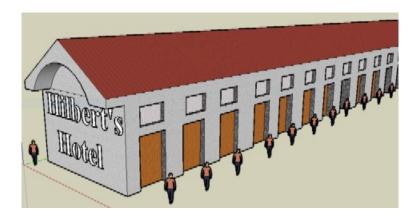
A is countable if there exists an injective $f: A \rightarrow \mathbb{N}$

A is uncountable if there does not exist an injective $f: A \rightarrow \mathbb{N}$

countable: $|A| \leq |\mathbb{N}|$ uncountable: $|A| > |\mathbb{N}|$

Does there exist such an A?

Hilbert's Hotel



...has as many rooms as there are natural numbers

1	3	3	3	3	3	3	• • •	
2	1	2	3	4	5	6	7	
3	0	1	0	1	0			
4	7	8	5	3	9			

1	4	3	3	3	3	3	• • •	
2	1	2	3	4	5	6	7	
3	0	1	0	1	0			
4	7	8	5	3	9	• • •		

1	4	3	3	3	3	3	• • •	
2	1	3	3	4	5	6	7	
3	0	1	0	1	0	• • •		
4	7	8	5	3	9			

1	4	3	3	3	3	3	• • •	
2	1	3	3	4	5	6	7	
3	0	1	1	1	0			
4	7	8	5	3	9	• • •		

1	4	3	3	3	3	3	• • •	
2	1	3	3	4	5	6	7	
3	0	1	1	1	0			
4	7	8	5	4	9	• • •		

1	4	3	3	3	3	3	• • •	
2	1	3	3	4	5	6	7	
3	0	1	1	1	0	• • •		
4	7	8	5	4	9	• • •		

$$|\mathbb{N}| < |R|$$

The Set of Problems

 \aleph_0

	0	1	2	3	4	5	• • •	
1	0	1	0	1	0	1		
2	0	0	0	1	1	0	0	
3	0	0	0	0	0			
4	1	1	0	1	1	• • •		

The Set of Problems

 \aleph_0

	0	1	2	3	4	5	• • •	
1	0	1	0	1	0	1	• • •	
2	0	0	0	1	1	0	0	
3	0	0	0	0	0			
4	1	1	0	1	1	• • •		

$$|\mathsf{Progs}| = |\mathbb{N}| < |\mathsf{Probs}|$$

Halting Problem

Assume a program *H* that decides for all programs *A* and all input data *D* whether

- $H(A, D) \stackrel{\text{def}}{=} 1 \text{ iff } A(D) \text{ terminates}$
- $H(A, D) \stackrel{\text{def}}{=} 0$ otherwise

Halting Problem (2)

Given such a program *H* define the following program *C*: for all programs *A*

- $\bullet \ C(A) \stackrel{\text{def}}{=} 0 \text{ iff } H(A,A) = 0$
- $C(A) \stackrel{\text{def}}{=} loops$ otherwise

Contradiction

H(C,C) is either 0 or 1.

$$\bullet \ H(C,C) = 1 \stackrel{\mathsf{def}\,H}{\Rightarrow} C(C) \downarrow \stackrel{\mathsf{def}\,C}{\Rightarrow} H(C,C) = 0$$

•
$$H(C,C) = 0 \stackrel{\text{def } H}{\Rightarrow} C(C) \text{ loops} \stackrel{\text{def } C}{\Rightarrow}$$

$$H(C,C)=1$$

Contradiction in both cases. So H cannot exist.

Take Home Points

- there are sets that are more infinite than others
- even with the most powerful computer we can imagine, there are problems that cannot be solved by any program

 in CS we actually hit quite often such problems (halting problem)