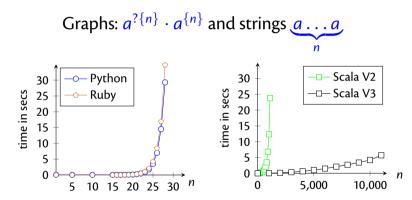
Compilers and Formal Languages

Email:christian.urban at kcl.ac.ukSlides & Progs:KEATS (also homework is there)

6 While-Language
7 Compilation, JVM
8 Compiling Functional Languages
9 Optimisations
10 LLVM

Let's Implement an Efficient Regular Expression Matcher



In the handouts is a similar graph for $(a^*)^* \cdot b$ and Java 8, JavaScript and Python.

(Basic) Regular Expressions

Their inductive definition:

0	not
1	emp
С	cha
$r_1 + r_2$	alte
$r_1 \cdot r_2$	sequ
r *	star
	$r_1 + r_2 \\ r_1 \cdot r_2$

nothing empty string / "" / [] character alternative / choice sequence star (zero or more)

When Are Two Regular Expressions Equivalent?

Two regular expressions r_1 and r_2 are equivalent provided: $r_1 \equiv r_2 \stackrel{\text{def}}{=} L(r_1) = L(r_2)$

Some Concrete Equivalences

$$(a+b)+c \equiv a+(b+c)$$

$$a+a \equiv a$$

$$a+b \equiv b+a$$

$$(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$$

$$c \cdot (a+b) \equiv (c \cdot a) + (c \cdot b)$$

Some Concrete Equivalences

$$(a+b)+c \equiv a+(b+c)$$

$$a+a \equiv a$$

$$a+b \equiv b+a$$

$$(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$$

$$c \cdot (a+b) \equiv (c \cdot a) + (c \cdot b)$$

$$a \cdot a \not\equiv a$$

$$a+(b \cdot c) \not\equiv (a+b) \cdot (a+c)$$

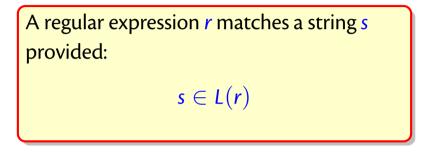
Some Corner Cases

$$\begin{array}{rrrrr} a \cdot \mathbf{0} & \not\equiv & a \\ a + \mathbf{1} & \not\equiv & a \\ \mathbf{1} & \equiv & \mathbf{0}^* \\ \mathbf{1}^* & \equiv & \mathbf{1} \\ \mathbf{0}^* & \not\equiv & \mathbf{0} \end{array}$$

Some Simplification Rules

 $r+0 \equiv r$ $0+r \equiv r$ $r \cdot 1 \equiv r$ $1 \cdot r \equiv r$ $r \cdot 0 \equiv 0$ $0 \cdot r \equiv 0$ $r+r \equiv r$

The Specification for Matching



...and the point of the this lecture is to decide this problem as fast as possible (unlike Python, Ruby, Java etc)

Semantic Derivative

• The **Semantic Derivative** of a language w.r.t. to a character *c*:

$$Der\,c\,\mathsf{A}\stackrel{\text{\tiny def}}{=}\{\mathsf{s}\mid c::\mathsf{s}\in\mathsf{A}\}$$

For $A = \{foo, bar, frak\}$ then $Der f A = \{oo, rak\}$ $Der b A = \{ar\}$ $Der a A = \{\}$

Semantic Derivative

• The **Semantic Derivative** of a language w.r.t. to a character *c*:

$$Der \, c \, A \stackrel{\text{\tiny def}}{=} \{ s \mid c :: s \in A \}$$

For
$$A = \{foo, bar, frak\}$$
 then
 $Der fA = \{oo, rak\}$
 $Der bA = \{ar\}$
 $Der aA = \{\}$

We can extend this definition to strings

Ders s A =
$$\{s' \mid s @ s' \in A\}$$

Brzozowski's Algorithm (1)

...whether a regular expression can match the empty string:

 $\begin{array}{ll} nullable(\mathbf{0}) & \stackrel{\text{def}}{=} false\\ nullable(\mathbf{1}) & \stackrel{\text{def}}{=} true\\ nullable(c) & \stackrel{\text{def}}{=} false\\ nullable(r_1 + r_2) & \stackrel{\text{def}}{=} nullable(r_1) \lor nullable(r_2)\\ nullable(r_1 \cdot r_2) & \stackrel{\text{def}}{=} nullable(r_1) \land nullable(r_2)\\ nullable(r^*) & \stackrel{\text{def}}{=} true \end{array}$

The Derivative of a Rexp

If r matches the string c::s, what is a regular expression that matches just s?

der cr gives the answer, Brzozowski 1964

The Derivative of a Rexp

der c (0)	def	0
der c (1)	def	0
der c (d)	def	if <i>c</i> = <i>d</i> then 1 else 0
der c $(r_1 + r_2)$	def	der c r ₁ + der c r ₂
der c $(r_1 \cdot r_2)$	def	
		then $(der c r_1) \cdot r_2 + der c r_2$
		else $(der c r_1) \cdot r_2$
der c (r^*)	def	$(\operatorname{der} \operatorname{c} \operatorname{r}) \cdot (\operatorname{r}^*)$

The Derivative of a Rexp

der c (0)	$\stackrel{\text{def}}{=} 0$
der c (1)	$\stackrel{\text{def}}{=}$ 0
der c (d)	$\stackrel{\text{\tiny def}}{=}$ if $c = d$ then 1 else 0
der c $(r_1 + r_2)$	$\stackrel{\text{\tiny def}}{=} der c r_1 + der c r_2$
der c $(r_1 \cdot r_2)$	$\stackrel{\text{\tiny def}}{=}$ if nullable(r ₁)
	then $(\operatorname{der} c r_1) \cdot r_2 + \operatorname{der} c r_2$
	else $(der c r_1) \cdot r_2$
der c (r^*)	$\stackrel{\text{def}}{=} (\operatorname{der} \operatorname{c} \operatorname{r}) \cdot (\operatorname{r}^*)$
	1.6
ders [] r	$\stackrel{\text{def}}{=}$ r
ders (c :: s) r	$\stackrel{\text{\tiny def}}{=} ders s (der c r)$

Examples

Given
$$r \stackrel{\text{def}}{=} ((a \cdot b) + b)^*$$
 what is
 $der \, a \, r = ?$
 $der \, b \, r = ?$
 $der \, c \, r = ?$

The Brzozowski Algorithm

matches $r s \stackrel{\text{def}}{=} nullable(ders s r)$

Brzozowski: An Example

Does r_1 match *abc*?

- Step 1: build derivative of *a* and r_1 ($r_2 = der a r_1$)
- Step 2: build derivative of b and r_2
- Step 3: build derivative of c and r_3

$$(r_3 = \det b r_2)$$
$$(r_4 = \det c r_3)$$

- Step 4: the string is exhausted: $(nullable(r_4))$ test whether r_4 can recognise the empty string
- Output: result of the test \Rightarrow *true* or *false*

The Idea of the Algorithm

If we want to recognise the string *abc* with regular expression r_1 then

• Der a $(L(r_1))$

The Idea of the Algorithm

If we want to recognise the string abc with regular expression r_1 then

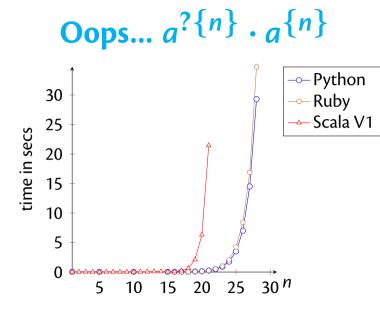
Der a (L(r₁))
Der b (Der a (L(r₁)))

The Idea of the Algorithm

If we want to recognise the string abc with regular expression r_1 then

- Der a $(L(r_1))$
- Der b (Der a $(L(r_1)))$
- Der c (Der b (Der a $(L(r_1)))$)
- finally we test whether the empty string is in this set; same for *Ders abc* $(L(r_1))$.

The matching algorithm works similarly, just over regular expressions instead of sets.



A Problem

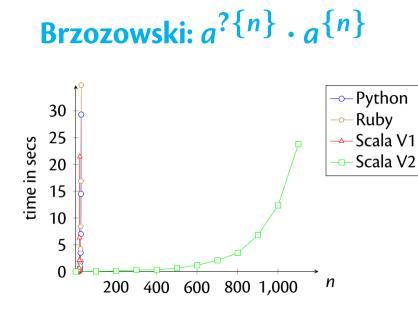
We represented the "n-times" $a^{\{n\}}$ as a sequence regular expression:

This problem is aggravated with $a^{?}$ being represented as a + 1.

Solving the Problem

What happens if we extend our regular expressions with explicit constructors

What is their meaning? What are the cases for *nullable* and *der*?



Examples

Recall the example of $r \stackrel{\text{def}}{=} ((a \cdot b) + b)^*$ with

$$der a r = ((\mathbf{1} \cdot b) + \mathbf{0}) \cdot r$$

$$der b r = ((\mathbf{0} \cdot b) + \mathbf{1}) \cdot r$$

$$der c r = ((\mathbf{0} \cdot b) + \mathbf{0}) \cdot r$$

What are these regular expressions equivalent to?

Simplification Rules

$$r + 0 \Rightarrow r$$

$$0 + r \Rightarrow r$$

$$r \cdot 1 \Rightarrow r$$

$$1 \cdot r \Rightarrow r$$

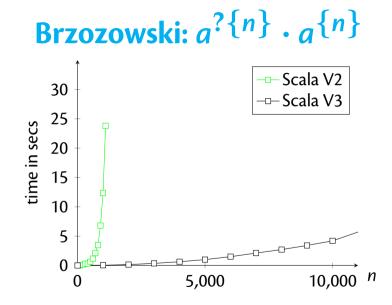
$$r \cdot 0 \Rightarrow 0$$

$$0 \cdot r \Rightarrow 0$$

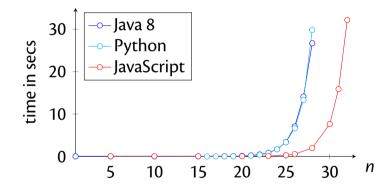
$$r + r \Rightarrow r$$

```
def ders(s: List[Char], r: Rexp) : Rexp = s match {
   case Nil => r
   case c::s => ders(s, simp(der(c, r)))
}
```

```
def simp(r: Rexp) : Rexp = r match {
  case ALT(r1, r2) => {
    (simp(r1), simp(r2)) match {
      case (ZERO, r2s) => r2s
      case (r1s, ZERO) => r1s
      case (r1s, r2s) =>
        if (r1s == r2s) r1s else ALT(r1s, r2s)
  case SEO(r1, r2) => {
    (simp(r1), simp(r2)) match {
      case (ZERO, ) => ZERO
      case (_, ZERO) => ZERO
      case (ONE, r2s) => r2s
      case (r1s, ONE) => r1s
      case (r1s, r2s) => SEQ(r1s, r2s)
  case r => r
```

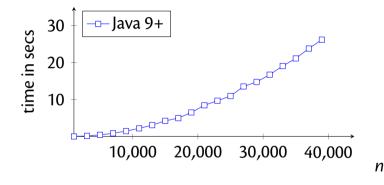


Another Example $(a^*)^* \cdot b$

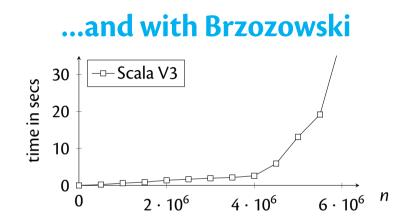


Regex: $(a^*)^* \cdot b$ Strings of the form $a \dots a$

Same Example in Java 9+



Regex: $(a^*)^* \cdot b$ Strings of the form $a \dots a_n$



Regex: $(a^*)^* \cdot b$ Strings of the form $a \dots a$

What is good about this Alg.

- extends to most regular expressions, for example
 r (next slide)
- is easy to implement in a functional language (slide after)
- the algorithm is already quite old; there is still work to be done to use it as a tokenizer (that is relatively new work)
- we can prove its correctness...(several slides later)

Negation of Regular Expr's

- $\sim r$ (everything that *r* cannot recognise)
- $L(\sim r) \stackrel{\text{\tiny def}}{=} UNIV L(r)$
- $nullable(\sim r) \stackrel{\text{\tiny def}}{=} not(nullable(r))$
- der $c(\sim r) \stackrel{\text{\tiny def}}{=} \sim (der c r)$

Negation of Regular Expr's

- $\sim r$ (everything that *r* cannot recognise)
- $L(\sim r) \stackrel{\text{\tiny def}}{=} UNIV L(r)$
- $nullable(\sim r) \stackrel{\text{\tiny def}}{=} not(nullable(r))$
- der c $(\sim r) \stackrel{\text{\tiny def}}{=} \sim (der c r)$

Used often for recognising comments:

$$/\cdot * \cdot (\sim ([a-z]^* \cdot * \cdot / \cdot [a-z]^*)) \cdot * \cdot /$$

Coursework

Strand 1:

- Submission on Friday 11 October accepted until Monday 14 @ 18:00
- source code needs to be submitted as well
- you can re-use my Scala code from KEATS or use any programming language you like
- https://nms.kcl.ac.uk/christian.urban/ProgInScala2ed.pdf

Proofs about Rexps

Remember their inductive definition:

If we want to prove something, say a property P(r), for all regular expressions r then ...

Proofs about Rexp (2)

- *P* holds for 0, 1 and c
- P holds for $r_1 + r_2$ under the assumption that P already holds for r_1 and r_2 .
- *P* holds for $r_1 \cdot r_2$ under the assumption that *P* already holds for r_1 and r_2 .
- *P* holds for *r*^{*} under the assumption that *P* already holds for *r*.

Proofs about Rexp (3)

Assume P(r) is the property:

nullable(r) if and only if [] $\in L(r)$

Proofs about Rexp (4)

$$rev(\mathbf{0}) \stackrel{\text{def}}{=} \mathbf{0}$$

$$rev(\mathbf{1}) \stackrel{\text{def}}{=} \mathbf{1}$$

$$rev(c) \stackrel{\text{def}}{=} c$$

$$rev(r_1 + r_2) \stackrel{\text{def}}{=} rev(r_1) + rev(r_2)$$

$$rev(r_1 \cdot r_2) \stackrel{\text{def}}{=} rev(r_2) \cdot rev(r_1)$$

$$rev(r^*) \stackrel{\text{def}}{=} rev(r)^*$$

We can prove

$$L(rev(r)) = \{s^{-1} \mid s \in L(r)\}$$

by induction on *r*.

Correctness Proof for our Matcher

• We started from

 $s \in L(r)$ $\Leftrightarrow \quad [] \in Ders \ s(L(r))$

Correctness Proof for our Matcher

• We started from

 $s \in L(r)$ $\Leftrightarrow [] \in Ders s (L(r))$

- if we can show Ders s (L(r)) = L(ders s r) we have
 - $\Leftrightarrow [] \in L(ders \, s \, r)$ $\Leftrightarrow \quad nullable(ders \, s \, r)$ $\stackrel{\text{def}}{=} \quad matches \, s \, r$

Proofs about Rexp (5)

Let *Der c A* be the set defined as

$$\textit{Der c } A \stackrel{\text{\tiny def}}{=} \{ s \mid c :: s \in A \}$$

We can prove

$$L(\operatorname{der} c r) = \operatorname{Der} c (L(r))$$

by induction on *r*.

Proofs about Strings

If we want to prove something, say a property P(s), for all strings s then ...

- P holds for the empty string, and
- *P* holds for the string *c* :: *s* under the assumption that *P* already holds for *s*

Proofs about Strings (2)

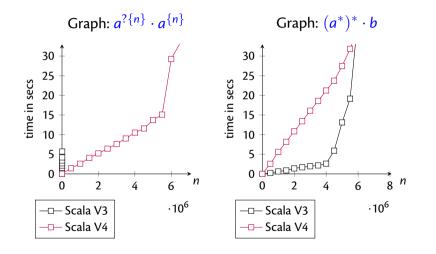
We can then prove

Ders s (L(r)) = L(ders s r)

We can finally prove

matches s r if and only if $s \in L(r)$

Epilogue



Epilogue

Graph: $a^{\{n\}} \cdot a^{\{n\}}$ Graph: $(a^*)^* \cdot b$ 30 30 25 دی کوچ 25 secs 20 def ders2(s: List[Char], r: Rexp) : Rexp = (s, r) match { case (Nil, r) => r case (s, ZERO) => ZERO case (s, ONE) => if (s == Nil) ONE else ZERO case (s, CHAR(c)) => if (s == List(c)) ONE else if (s == Nil) CHAR(c) else ZERO case (s, ALT(r1, r2)) => ALT(ders2(s, r2), ders2(s, r2)) case (c::s, r) => ders2(s, simp(der(c, r)))

• How many basic regular expressions are there to match the string *abcd* ?

- How many basic regular expressions are there to match the string *abcd* ?
- How many if they cannot include 1 and 0?

- How many basic regular expressions are there to match the string *abcd* ?
- How many if they cannot include 1 and 0?
- How many if they are also not allowed to contain stars?

- How many basic regular expressions are there to match the string *abcd* ?
- How many if they cannot include 1 and 0?
- How many if they are also not allowed to contain stars?
- How many if they are also not allowed to contain _+_?

Questions?

homework (written exam 80%) coursework (20%; first one today) submission Fridays @ 18:00 – accepted until Mondays