
Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk
Slides & Progs: KEATS (also homework is there)

1 Introduction, Languages 6 While-Language
2 Regular Expressions, Derivatives 7 Compilation, JVM
3 Automata, Regular Languages 8 Compiling Functional Languages
4 Lexing, Tokenising 9 Optimisations
5 Grammars, Parsing 10 LLVM

CFL 02, King’s College London – p. 1/41



Let’s Implement an Efficient
Regular ExpressionMatcher

Graphs: a?{n} · a{n} and strings a . . . a︸ ︷︷ ︸
n

5 10 15 20 25 30
0
5
10
15
20
25
30

n

tim
e
in
se
cs

Python
Ruby

0 5,000 10,000
0
5
10
15
20
25
30

n
tim

e
in
se
cs

Scala V2
Scala V3

In the handouts is a similar graph for (a∗)∗ · b and Java 8,
JavaScript and Python.

CFL 02, King’s College London – p. 2/41



(Basic) Regular Expressions

Their inductive definition:

r ::= 0 nothing
| 1 empty string / "" / []
| c character
| r1 + r2 alternative / choice
| r1 · r2 sequence
| r∗ star (zero or more)

CFL 02, King’s College London – p. 3/41



WhenAre Two Regular
Expressions Equivalent?

Two regular expressions r1 and r2 are
equivalent provided:

r1 ≡ r2
def
= L(r1) = L(r2)

CFL 02, King’s College London – p. 4/41



Some Concrete Equivalences

(a+ b) + c ≡ a+ (b+ c)
a+ a ≡ a
a+ b ≡ b+ a

(a · b) · c ≡ a · (b · c)
c · (a+ b) ≡ (c · a) + (c · b)

a · a ̸≡ a
a+ (b · c) ̸≡ (a+ b) · (a+ c)

CFL 02, King’s College London – p. 5/41



Some Concrete Equivalences

(a+ b) + c ≡ a+ (b+ c)
a+ a ≡ a
a+ b ≡ b+ a

(a · b) · c ≡ a · (b · c)
c · (a+ b) ≡ (c · a) + (c · b)

a · a ̸≡ a
a+ (b · c) ̸≡ (a+ b) · (a+ c)

CFL 02, King’s College London – p. 5/41



Some Corner Cases

a · 0 ̸≡ a
a+ 1 ̸≡ a

1 ≡ 0∗

1∗ ≡ 1
0∗ ̸≡ 0

CFL 02, King’s College London – p. 6/41



Some Simplification Rules

r+ 0 ≡ r
0+ r ≡ r
r · 1 ≡ r
1 · r ≡ r
r · 0 ≡ 0
0 · r ≡ 0
r+ r ≡ r

CFL 02, King’s College London – p. 7/41



The Specification forMatching

A regular expression rmatches a string s
provided:

s ∈ L(r)

…and the point of the this lecture is to decide this
problem as fast as possible (unlike Python, Ruby, Java
etc)

CFL 02, King’s College London – p. 8/41



Semantic Derivative
The Semantic Derivative of a language
w.r.t. to a character c:

Der c A def
= {s | c :: s ∈ A}

For A = {foo, bar, frak} then
Der f A = {oo, rak}
Der b A = {ar}
Der a A = {}

We can extend this definition to strings

Ders s A = {s′ | s@ s′ ∈ A}

CFL 02, King’s College London – p. 9/41



Semantic Derivative
The Semantic Derivative of a language
w.r.t. to a character c:

Der c A def
= {s | c :: s ∈ A}

For A = {foo, bar, frak} then
Der f A = {oo, rak}
Der b A = {ar}
Der a A = {}

We can extend this definition to strings

Ders s A = {s′ | s@ s′ ∈ A}
CFL 02, King’s College London – p. 9/41



Brzozowski’s Algorithm (1)
…whether a regular expression can match the empty
string:

nullable(0) def
= false

nullable(1) def
= true

nullable(c) def
= false

nullable(r1 + r2)
def
= nullable(r1) ∨ nullable(r2)

nullable(r1 · r2)
def
= nullable(r1) ∧ nullable(r2)

nullable(r∗) def
= true

CFL 02, King’s College London – p. 10/41



TheDerivative of a Rexp

If rmatches the string c :: s, what is a regular
expression that matches just s?

der c r gives the answer, Brzozowski 1964

CFL 02, King’s College London – p. 11/41



TheDerivative of a Rexp
der c (0) def

= 0
der c (1) def

= 0
der c (d) def

= if c = d then 1 else 0
der c (r1 + r2)

def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

ders [] r def
= r

ders (c :: s) r def
= ders s (der c r)

CFL 02, King’s College London – p. 12/41



TheDerivative of a Rexp
der c (0) def

= 0
der c (1) def

= 0
der c (d) def

= if c = d then 1 else 0
der c (r1 + r2)

def
= der c r1 + der c r2

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

der c (r∗) def
= (der c r) · (r∗)

ders [] r def
= r

ders (c :: s) r def
= ders s (der c r)

CFL 02, King’s College London – p. 12/41



Examples

Given r def
= ((a · b) + b)∗ what is

der a r = ?
der b r = ?
der c r = ?

CFL 02, King’s College London – p. 13/41



TheBrzozowski Algorithm

matches r s def
= nullable(ders s r)

CFL 02, King’s College London – p. 14/41



Brzozowski: An Example
Does r1 match abc?

Step 1: build derivative of a and r1 (r2 = der a r1)
Step 2: build derivative of b and r2 (r3 = der b r2)
Step 3: build derivative of c and r3 (r4 = der c r3)
Step 4: the string is exhausted: (nullable(r4))

test whether r4 can recognise
the empty string

Output: result of the test
⇒ true or false

CFL 02, King’s College London – p. 15/41



The Idea of the Algorithm
If we want to recognise the string abcwith regular
expression r1 then

1 Der a (L(r1))

2 Der b (Der a (L(r1)))
3 Der c (Der b (Der a (L(r1))))

4 finally we test whether the empty string is in this
set; same for Ders abc (L(r1)).

The matching algorithm works similarly, just over
regular expressions instead of sets.

CFL 02, King’s College London – p. 16/41



The Idea of the Algorithm
If we want to recognise the string abcwith regular
expression r1 then

1 Der a (L(r1))
2 Der b (Der a (L(r1)))

3 Der c (Der b (Der a (L(r1))))

4 finally we test whether the empty string is in this
set; same for Ders abc (L(r1)).

The matching algorithm works similarly, just over
regular expressions instead of sets.

CFL 02, King’s College London – p. 16/41



The Idea of the Algorithm
If we want to recognise the string abcwith regular
expression r1 then

1 Der a (L(r1))
2 Der b (Der a (L(r1)))
3 Der c (Der b (Der a (L(r1))))

4 finally we test whether the empty string is in this
set; same for Ders abc (L(r1)).

The matching algorithm works similarly, just over
regular expressions instead of sets.

CFL 02, King’s College London – p. 16/41



Oops… a?{n} · a{n}

5 10 15 20 25 30
0

5

10

15

20

25

30

n

tim
e
in

se
cs

Python
Ruby
Scala V1

CFL 02, King’s College London – p. 17/41



A Problem
We represented the “n-times” a{n} as a sequence
regular expression:

1: a
2: a · a
3: a · a · a

…
13: a · a · a · a · a · a · a · a · a · a · a · a · a

…
20:

This problem is aggravated with a? being
represented as a+ 1.

CFL 02, King’s College London – p. 18/41



Solving the Problem

What happens if we extend our regular expressions
with explicit constructors

r ::= …
| r{n}

| r?

What is their meaning?
What are the cases for nullable and der?

CFL 02, King’s College London – p. 19/41



Brzozowski: a?{n} · a{n}

200 400 600 800 1,000
0
5

10
15
20
25
30

n

tim
e
in

se
cs

Python
Ruby
Scala V1
Scala V2

CFL 02, King’s College London – p. 20/41



Examples

Recall the example of r def
= ((a · b) + b)∗ with

der a r = ((1 · b) + 0) · r
der b r = ((0 · b) + 1) · r
der c r = ((0 · b) + 0) · r

What are these regular expressions equivalent to?

CFL 02, King’s College London – p. 21/41



Simplification Rules
r+ 0 ⇒ r
0+ r ⇒ r
r · 1 ⇒ r
1 · r ⇒ r
r · 0 ⇒ 0
0 · r ⇒ 0
r+ r ⇒ r

def ders(s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, simp(der(c, r)))

}

CFL 02, King’s College London – p. 22/41



def simp(r: Rexp) : Rexp = r match {
case ALT(r1, r2) => {

(simp(r1), simp(r2)) match {
case (ZERO, r2s) => r2s
case (r1s, ZERO) => r1s
case (r1s, r2s) =>

if (r1s == r2s) r1s else ALT(r1s, r2s)
}

}
case SEQ(r1, r2) => {

(simp(r1), simp(r2)) match {
case (ZERO, _) => ZERO
case (_, ZERO) => ZERO
case (ONE, r2s) => r2s
case (r1s, ONE) => r1s
case (r1s, r2s) => SEQ(r1s, r2s)

}
}
case r => r

}
CFL 02, King’s College London – p. 23/41



Brzozowski: a?{n} · a{n}

0 5,000 10,000
0

5

10

15

20

25

30

n

tim
e
in

se
cs

Scala V2
Scala V3

CFL 02, King’s College London – p. 24/41



Another Example (a∗)∗ · b

5 10 15 20 25 30
0

10

20

30

n

tim
e
in

se
cs

Java 8
Python
JavaScript

Regex: (a∗)∗ · b
Strings of the form a . . . a︸ ︷︷ ︸

n
CFL 02, King’s College London – p. 25/41



Same Example in Java 9+

10,000 20,000 30,000 40,000

10

20

30

n

tim
e
in

se
cs

Java 9+

Regex: (a∗)∗ · b
Strings of the form a . . . a︸ ︷︷ ︸

n

CFL 02, King’s College London – p. 26/41



…andwith Brzozowski

0 2 · 106 4 · 106 6 · 106
0

10

20

30

n

tim
e
in

se
cs

Scala V3

Regex: (a∗)∗ · b
Strings of the form a . . . a︸ ︷︷ ︸

n

CFL 02, King’s College London – p. 27/41



What is good about this Alg.

extends to most regular expressions, for example
∼ r (next slide)
is easy to implement in a functional language (slide
after)
the algorithm is already quite old; there is still work
to be done to use it as a tokenizer (that is relatively
new work)
we can prove its correctness…(several slides later)

CFL 02, King’s College London – p. 28/41



Negation of Regular Expr’s
∼ r (everything that r cannot recognise)

L(∼ r) def
= UNIV− L(r)

nullable(∼ r) def
= not (nullable(r))

der c (∼ r) def
= ∼ (der c r)

Used often for recognising comments:

/ · ∗ · (∼ ([a-z]∗ · ∗ · / · [a-z]∗)) · ∗ · /

CFL 02, King’s College London – p. 29/41



Negation of Regular Expr’s
∼ r (everything that r cannot recognise)

L(∼ r) def
= UNIV− L(r)

nullable(∼ r) def
= not (nullable(r))

der c (∼ r) def
= ∼ (der c r)

Used often for recognising comments:

/ · ∗ · (∼ ([a-z]∗ · ∗ · / · [a-z]∗)) · ∗ · /

CFL 02, King’s College London – p. 29/41



Coursework

Strand 1:
Submission on Friday 11 October
accepted until Monday 14 @ 18:00

source code needs to be submitted as well

you can re-use my Scala code from KEATS
or use any programming language you like

https://nms.kcl.ac.uk/christian.urban/ProgInScala2ed.pdf

CFL 02, King’s College London – p. 30/41



Proofs about Rexps
Remember their inductive definition:

If we want to prove something, say a property P(r),
for all regular expressions r then …

CFL 02, King’s College London – p. 31/41

r ::= 0
| 1
| c
| r1 · r2
| r1 + r2
| r∗



Proofs about Rexp (2)

P holds for 0, 1 and c

P holds for r1 + r2 under the assumption that P
already holds for r1 and r2.

P holds for r1 · r2 under the assumption that P
already holds for r1 and r2.

P holds for r∗ under the assumption that P already
holds for r.

CFL 02, King’s College London – p. 32/41



Proofs about Rexp (3)

Assume P(r) is the property:

nullable(r) if and only if [] ∈ L(r)

CFL 02, King’s College London – p. 33/41



Proofs about Rexp (4)
rev(0) def

= 0
rev(1) def

= 1
rev(c) def

= c
rev(r1 + r2)

def
= rev(r1) + rev(r2)

rev(r1 · r2)
def
= rev(r2) · rev(r1)

rev(r∗) def
= rev(r)∗

We can prove

L(rev(r)) = {s−1 | s ∈ L(r)}

by induction on r.
CFL 02, King’s College London – p. 34/41



Correctness Proof
for ourMatcher

We started from
s ∈ L(r)

⇔ [] ∈ Ders s (L(r))

if we can show Ders s (L(r)) = L(ders s r) we have

⇔ [] ∈ L(ders s r)

⇔ nullable(ders s r)
def
= matches s r

CFL 02, King’s College London – p. 35/41



Correctness Proof
for ourMatcher

We started from
s ∈ L(r)

⇔ [] ∈ Ders s (L(r))

if we can show Ders s (L(r)) = L(ders s r) we have

⇔ [] ∈ L(ders s r)

⇔ nullable(ders s r)
def
= matches s r

CFL 02, King’s College London – p. 35/41



Proofs about Rexp (5)

Let Der c A be the set defined as

Der c A def
= {s | c :: s ∈ A}

We can prove

L(der c r) = Der c (L(r))

by induction on r.

CFL 02, King’s College London – p. 36/41



Proofs about Strings

If we want to prove something, say a property P(s),
for all strings s then …

P holds for the empty string, and

P holds for the string c :: s under the assumption
that P already holds for s

CFL 02, King’s College London – p. 37/41



Proofs about Strings (2)

We can then prove

Ders s (L(r)) = L(ders s r)

We can finally prove

matches s r if and only if s ∈ L(r)

CFL 02, King’s College London – p. 38/41



Epilogue

0 2 4 6

·106

0

5

10

15

20

25

30

n

tim
e
in
se
cs

Graph: a?{n} · a{n}

Scala V3
Scala V4

0 2 4 6 8

·106

0

5

10

15

20

25

30

n
tim

e
in
se
cs

Graph: (a∗)∗ · b

Scala V3
Scala V4

CFL 02, King’s College London – p. 39/41



Epilogue

0 2 4 6

·106

0

5

10

15

20

25

30

n

tim
e
in
se
cs

Graph: a?{n} · a{n}

Scala V3
Scala V4

0 2 4 6 8

·106

0

5

10

15

20

25

30

n
tim

e
in
se
cs

Graph: (a∗)∗ · b

Scala V3
Scala V4

CFL 02, King’s College London – p. 39/41

def ders2(s: List[Char], r: Rexp) : Rexp = (s, r) match {
case (Nil, r) => r
case (s, ZERO) => ZERO
case (s, ONE) => if (s == Nil) ONE else ZERO
case (s, CHAR(c)) => if (s == List(c)) ONE else

if (s == Nil) CHAR(c) else ZERO
case (s, ALT(r1, r2)) => ALT(ders2(s, r2), ders2(s, r2))
case (c::s, r) => ders2(s, simp(der(c, r)))

}



Another Homework Question

How many basic regular expressions are there to
match the string abcd ?

How many if they cannot include 1 and 0?
How many if they are also not allowed to contain
stars?
How many if they are also not allowed to contain
_+ _?

CFL 02, King’s College London – p. 40/41



Another Homework Question

How many basic regular expressions are there to
match the string abcd ?
How many if they cannot include 1 and 0?

How many if they are also not allowed to contain
stars?
How many if they are also not allowed to contain
_+ _?

CFL 02, King’s College London – p. 40/41



Another Homework Question

How many basic regular expressions are there to
match the string abcd ?
How many if they cannot include 1 and 0?
How many if they are also not allowed to contain
stars?

How many if they are also not allowed to contain
_+ _?

CFL 02, King’s College London – p. 40/41



Another Homework Question

How many basic regular expressions are there to
match the string abcd ?
How many if they cannot include 1 and 0?
How many if they are also not allowed to contain
stars?
How many if they are also not allowed to contain
_+ _?

CFL 02, King’s College London – p. 40/41



Questions?
homework (written exam 80%)
coursework (20%; first one today)
submission Fridays @ 18:00 – accepted until
Mondays

CFL 02, King’s College London – p. 41/41


