Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk
Slides & Progs: KEATS (also homework is there)

1 Introduction, Languages 6 While-Language

7 Compilation, JVM
3 Automata, Regular Languages 8 Compiling Functional Languages
4 Lexing, Tokenising 9 Optimisations

5 Grammars, Parsing 10 LLVM

Let’s Implement an Efficient
Regular Expression Matcher

. g’int . gin} '
Graphs: a al andstrings a...a

n

30 | —+ Scala V2
25 + —+ Scala V3

time in secs
time in secs

n
5 10 15 20 25 30 " 0 5,000 10,000

In the handouts is a similar graph for (a*)* - b and Java 8,
JavaScript and Python.

(Basic) Regular Expressions

Their inductive definition:

r

nothing

empty string / "" / []
character
alternative / choice
sequence

star (zero or more)

When Are Two Regular
Expressions Equivalent?

.
Two regular expressions ry and r, are
equivalent provided:

def

n=r, = Ln) =Lr)

Some Concrete Equivalences

(a+b)+c = a+ (b+c¢)
at+a = a
a+b = b-+a
(a-b)-c = a-(b-c)
c-(a+b) = (c-a)+(c-b)

Some Concrete Equivalences

(a+b)+c = a+ (b+c¢)
at+a = a
a+b = b-+a
(a-b)-c = a-(b-c)
c-(a+b) = (c-a)+(c-b)
a-a % a

a+(b-c) # (a+b)-(a+c)

Some Corner Cases

a-0
a+1

-l*

TCNE TR TR
Q

Some Simplification Rules

r+0
0—+r
r-1
1-r
r-0
0-r
r+r

ST OO S ™ S S

The Specification for Matching

A regular expression r matches a string s
provided:

seL(r)

N\

...and the point of the this lecture is to decide this
problem as fast as possible (unlike Python, Ruby, Java
etc)

Semantic Derivative

@ The Semantic Derivative of a language
w.r.t. to a character c:

DercA = {s|cus €A}

For A = {foo, bar, frak} then
DerfA = {oo,rak}
DerbA = {ar}
DeraA = {}

Semantic Derivative

The Semantic Derivative of a language
w.r.t. to a character c:

DercA = {s|cus €A}

For A = {foo, bar, frak} then
DerfA = {oo,rak}
DerbA = {ar}
DeraA = {}

We can extend this definition to strings

DerssA = {s' | s@s' € A}

Brzozowski’s Algorithm (1)

...whether a regular expression can match the empty
string:

nullable(0) = false
nullable(1) = true
) < false

nullable(ry + ry) = nullable(ry) \ nullable(r,)

def

nullable(ry - r,) = nullable(ry) A nullable(r,)

nullable(r*) < true

(
(
nullable(c
(def
(
(

The Derivative of a Rexp

If r matches the string c::s, what is a regular
expression that matches just s?

der c r gives the answer, Brzozowski 1964

The Derivative of a Rexp

derc (0)
derc (1)
derc (d)
derc(ri+r,)

(

derc (ry - rp)

derc (r")

def
def
def

def

0

0

ifc = dthen 1else 0
dercry +dercr,

if nullable(ry)
then (dercry) - r, + dercr,
else (dercry) - r,

(dercr) - (r*)

The Derivative of a Rexp

derc (0) =0

derc (1) =

derc (d) = ifc = dthen1else0
derc (ri +ry) = dercry +dercr,
derc(ri-r)) = ifnullable(r;)

then (dercry) - r, + dercr,
else (dercry) - r,

derc (r") = (dercr) - (r*)

ders[| r =r
ders (c::s)r = derss (dercr)

Examples

Givenr = ((a-b) + b)* what s

derar =7
derbr =7
dercr =7

The Brzozowski Algorithm

matchesrs = nullable(ders s r)

Brzozowski: An Example

Does r; match abc?

Step 1:
Step 2:
Step 3:
Step 4:

Output:

build derivative ofaand r; (r, = derary)

(
build derivative of bandr, (r; = derbr,)
build derivative of cand r; (r; = dercr3)
the string is exhausted: (nullable(rs))
test whether r4 can recognise

the empty string

result of the test
= true or false

The Idea of the Algorithm

If we want to recognise the string abc with regular
expression ry then

@ Dera (L(ry))

The Idea of the Algorithm

If we want to recognise the string abc with regular
expression ry then

@ Dera (L(ry))
@ Derb (Dera (L(ry)))

The Idea of the Algorithm

If we want to recognise the string abc with regular
expression ry then

@ Dera (L(ry))
@ Derb (Dera(L(ry)))
© Derc (Derb (Dera(L(ry))))

@ finally we test whether the empty string is in this
set; same for Ders abc (L(ry)).

The matching algorithm works similarly, just over
regular expressions instead of sets.

time in secs

Oops... a’in} . gin}

30 |
25 |
20 |
15 |
10 |

—o—Python
—o— Ruby
——Scala V1

5 10 15 20 25 307

A Problem

We represented the “n-times” al™ asa sequence
regular expression:

1. a
2. a-a
3: a-a-a

13: a-a-a-a-a-a-a-a-a-a-a-a-a
20:

This problem is aggravated with a’ being
represented asa + 1.

Solving the Problem

What happens if we extend our regular expressions
with explicit constructors

o}

ron=
|
|

What is their meaning?
What are the cases for nullable and der?

time in secs

Brzozowski: a’ 1"} . g1}

30 |
25 |
20 |
15 |
10 |

—o—Python
—< Ruby
——Scala V1

~o-Scala V2

200 400 600 800 1,000

n

Examples

Recall the example of r = ((a - b) + b)* with

derar = ((1-b)+0)-r
derbr=((0-b)+1)-r
dercr=((0-b)+0)-r

What are these regular expressions equivalent to?

Simplification Rules

r+0
0+r
r-1
1-r
r-0
0-r
r—+r

R

def ders(s: List[Char], r: Rexp) : Rexp = s match {
case Nil => r
case c::s => ders(s, simp(der(c, r)))

}

def simp(r: Rexp) : Rexp = r match {
case ALT(r1, r2) => {
(simp(rl), simp(r2)) match {
case (ZERO, r2s) => r2s
case (rls, ZERO) => rils
case (rls, r2s) =>
if (rls == r2s) rls else ALT(rls, r2s)

}
case SEQ(rl1, r2) => {
(simp(rl), simp(r2)) match {
case (ZERO, _) => ZERO
case (_, ZERO) => ZERO
case (ONE, r2s) => r2s
case (rls, ONE) => rls
case (rls, r2s) => SEQ(rls, r2s)

}

case r =>r

Brzozowski: a’ 1"} . g1}

time in secs

30 |
25 |
20 |
15 |
10 |

~o-Scala V2
—o—Scala V3

Another Example (a*)™* - b

30 | |—°Java8
—o- Python
20 | | —oJavaScript

10 |

time in secs

0o

5 0 15 20 25 30 1

Regex: (a*)* - b
Strings of theform a...a

n

Same Example in Java 9+

30 | |-=Java 9+

20 |

10 |

time in secs

10,000 20,000 30,000 40,000
n

Regex: (a*)* - b
Strings of theform a. ..a

n

...and with Brzozowski

30 | [-=—ScalaV3

20 |

time in secs

10 |

0 2-10° 4-10° 6-10° "
Regex: (a*)* - b
Strings of theform a. . .a

n

What is good about this Alg.

extends to most regular expressions, for example
~ r (next slide)

is easy to implement in a functional language (slide
after)

the algorithm is already quite old; there is still work
to be done to use it as a tokenizer (that is relatively
new work)

we can prove its correctness...(several slides later)

Negation of Regular Expr’s

@ ~r (everything that r cannot recognise)
o L(~r) = UNIV —L(r)
o nullable(~ r) = not (nullable(r))

o derc(~r) = ~ (dercr)

Negation of Regular Expr’s

@ ~r (everything that r cannot recognise)

def

o L(~r) Z UNIV—L(r)

o nullable(~ r) = not (nullable(r))

def

@ derc(~r) =~ (dercr)

Used often for recognising comments:

[(e (o) /fad]) ke

Coursework

Strand 1:

@ Submission on Friday 11 October
accepted until Monday 14 @ 18:00

@ source code needs to be submitted as well

@ you can re-use my Scala code from KEATS
or use any programming language you like

@ https://nms.kcl.ac.uk/christian.urban/ProgInScala2ed.pdf

Proofs about Rexps

Remember their inductive definition:

r

If we want to prove something, say a property P(r),
for all regular expressions r then ...

Proofs about Rexp (2)

P holds for 0, 1 and ¢

P holds for r; 4 r, under the assumption that P
already holds for ry and r,.

P holds for ry - r, under the assumption that P
already holds for rq and r,.

P holds for r* under the assumption that P already
holds for r.

Proofs about Rexp (3)

Assume P(r) is the property:

nullable(r) ifand only if [| € L(r)

Proofs about Rexp (4)

We can prove

L(rev(r)) = {s" | s € L(r)}

by inductionon .

Correctness Proof
for our Matcher

@ We started from
s € L(r)

&[] € Derss (L(r))

Correctness Proof
for our Matcher

@ We started from
s € L(r)

&[] € Derss (L(r))

o if we can show Derss (L(r)) = L(derssr) we have

<[] € L(derssr)
< nullable(derssr)

def
= matchessr

Proofs about Rexp (5)

Let Der c A be the set defined as
DercA = {s|cus € A}
We can prove
L(dercr) = Derc (L(r))

by inductionon .

Proofs about Strings

If we want to prove something, say a property P(s),
for all strings s then ...

@ P holds for the empty string, and

@ P holds for the string c :: s under the assumption
that P already holds for s

Proofs about Strings (2)

We can then prove
Derss (L(r)) = L(derssr)
We can finally prove

matchessrifand onlyifs € L(r)

time in secs

Epilogue

Graph: a’ln} . gln}

——Scala V3
—— Scala V4

time in secs

Graph: (a*)* - b

—+—Scala V3
—— Scala V4

Epilogue

Graph: a’{"} . gin} Graph: (a*)* - b
30 30
L 25 25
|9 ()
2 20 2 20

7

def ders2(s: List[Char], r: Rexp) : Rexp = (s, r) match {
case (Nil, r) => r

case
case
case

case
case

(s,
(s,
(s,

(s,
(c::

ZERO) => ZERO
ONE) => if (s == Nil) ONE else ZERO
CHAR(c)) => if (s == List(c)) ONE else

if (s == Nil) CHAR(c) else ZERO
ALT(rl, r2)) => ALT(ders2(s, r2), ders2(s, r2))
s, r) => ders2(s, simp(der(c, r)))

Another Homework Question

@ How many basic regular expressions are there to
match the string abcd ?

Another Homework Question

@ How many basic regular expressions are there to
match the string abcd ?

@ How many if they cannot include 1 and 0?

Another Homework Question

@ How many basic regular expressions are there to
match the string abcd ?

@ How many if they cannot include 1 and 0?

@ How many if they are also not allowed to contain
stars?

Another Homework Question

@ How many basic regular expressions are there to
match the string abcd ?

@ How many if they cannot include 1 and 0?

@ How many if they are also not allowed to contain
stars?

@ How many if they are also not allowed to contain
_+_7

Questions?

homework (written exam 80%)

coursework (20%; first one today)
submission Fridays @ 18:00 — accepted until
Mondays

