
Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk
Slides & Progs: KEATS

1 Introduction, Languages 6 While-Language
2 Regular Expressions, Derivatives 7 Compilation, JVM
3 Automata, Regular Languages 8 Compiling Functional Languages
4 Lexing, Tokenising 9 Optimisations
5 Grammars, Parsing 10 LLVM

CFL 01, King’s College London – p. 1/27

Why Study Compilers?
John Regehr (Univ. Utah, LLVM compiler hacker)

“…It’s effectively a perpetual employment act for
solid compiler hackers.”

CFL 01, King’s College London – p. 2/27

https://blog.regehr.org/archives/1419

Why Study Compilers?
John Regehr (Univ. Utah, LLVM compiler hacker)

“…It’s effectively a perpetual employment act for
solid compiler hackers.”

Hardware is getting weirder rather than getting
clocked faster.

“Almost all processors are multicores nowadays and it
looks like there is increasing asymmetry in resources
across cores. Processors come with vector units, crypto
accelerators etc. We have DSPs, GPUs, ARM big.little,
and Xeon Phi. This is only scratching the surface.”

CFL 01, King’s College London – p. 2/27

https://blog.regehr.org/archives/1419

Why Study Compilers?
John Regehr (Univ. Utah, LLVM compiler hacker)

“…It’s effectively a perpetual employment act for
solid compiler hackers.”

We’re getting tired of low-level languages and
their associated security disasters.

“We want to write new code, to whatever extent
possible, in safer, higher-level languages. Compilers are
caught right in the middle of these opposing trends: one
of their main jobs is to help bridge the large and growing
gap between increasingly high-level languages and
increasingly wacky platforms.”

CFL 01, King’s College London – p. 2/27

https://blog.regehr.org/archives/1419

What are Compilers?

“source” “binary”

CFL 01, King’s College London – p. 3/27

Compiler explorers, e.g.: https://gcc.godbolt.org

https://gcc.godbolt.org

Why Bother?
Compilers & Boeings 777

First flight in 1994. They want to achieve triple
redundancy in hardware faults.

They compile 1 Ada program to

Intel 80486
Motorola 68040 (old Macintosh’s)
AMD 29050 (RISC chips used often in laser printers)

using 3 independent compilers.

Airbus uses C and static analysers. Recently started using
CompCert.

CFL 01, King’s College London – p. 4/27

Why Bother?
Compilers & Boeings 777

First flight in 1994. They want to achieve triple
redundancy in hardware faults.

They compile 1 Ada program to

Intel 80486
Motorola 68040 (old Macintosh’s)
AMD 29050 (RISC chips used often in laser printers)

using 3 independent compilers.

Airbus uses C and static analysers. Recently started using
CompCert.

CFL 01, King’s College London – p. 4/27

Why Bother?
Ruby, Python, Java 8

5 10 15 20 25 30
0
5
10
15
20
25
30

n

tim
e
in
se
cs

Python
Ruby

5 10 15 20 25 30
0
5
10
15
20
25
30

n

tim
e
in
se
cs

Python
Java 8
JavaScript

Us (after next lecture)

0 5,000 10,000
0
5
10
15
20
25
30

n

tim
e
in
se
cs

0 2 · 106 4 · 106
0
5
10
15
20
25
30

n

tim
e
in
se
cs

matching [a?]{n}[a]{n} and (a*)*b against a...a︸︷︷︸
n CFL 01, King’s College London – p. 5/27

Incidents
a global outage on 2 July 2019 at Cloudflare (first
one for six years)

(?:(?:\"|'|\]|\}|\\|\d|(?:nan|infinity|true|false|
null|undefined|symbol|math)|\`|\‐|\+)+[)]*;?((?:\s
|‐|~|!|{}|\|\||\+)*.*(?:.*=.*)))

on 20 July 2016 the Stack Exchangewebpage went
down because of an evil regular expression

CFL 01, King’s College London – p. 6/27

It serves more web traffic than Twitter,
Amazon, Apple, Instagram, Bing &
Wikipedia combined.

Evil Regular Expressions
Regular expression Denial of Service (ReDoS)

Evil regular expressions

(a?{n}) · a{n}
(a∗)∗ · b
([a− z]+)∗

(a+ a · a)∗
(a+ a?)∗

sometimes also called catastrophic backtracking
this is a problem for Network Intrusion Detection
systems, Cloudflare, StackExchange, Atom editor
https://vimeo.com/112065252

CFL 01, King’s College London – p. 7/27

https://vimeo.com/112065252

TheGoal of this Module

write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 8/27

TheGoal of this Module

write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 8/27

lexer input: a string
"read(n);"

lexer output: a sequence of tokens
key(read) lpar id(n) rpar semi

TheGoal of this Module

write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 8/27

lexer input: a string
"read(n);"

lexer output: a sequence of tokens
key(read) lpar id(n) rpar semi

lexing⇒ recognising words (Stone of Rosetta)

TheGoal of this Module

write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 8/27

lexer input: a string
"read(n);"

lexer output: a sequence of tokens
key(read) lpar id(n) rpar semi

lexing⇒ recognising words (Stone of Rosetta)

if ⇒ keyword
iffoo ⇒ identifier

TheGoal of this Module

write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 8/27

parser input: a sequence of tokens
key(read) lpar id(n) rpar semi

parser output: an abstract syntax tree

read

lpar n rpar

TheGoal of this Module

write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 8/27

code generator:
istore 2
iload 2
ldc 10
isub
ifeq Label2
iload 2
...

TheGoal of this Module

write a compiler
input
program

lexer parser code gen

binary
code

CFL 01, King’s College London – p. 8/27

code generator:
istore 2
iload 2
ldc 10
isub
ifeq Label2
iload 2
...

0 200 400 600 800 1,000 1,200

0

100

200

300

400

n

se
cs

TheAcad. Subject is Mature
Turing Machines, 1936 (a tape as memory)
Regular Expressions, 1956
The first compiler for COBOL, 1957
(Grace Hopper)

But surprisingly research papers are still published
nowadays
“Parsing: The Solved Problem That Isn’t”

Grace Hopper

(she made it to David Letterman’s Tonight Show,
https://youtu.be/3N_ywhx6_K0?t=31)

CFL 01, King’s College London – p. 9/27

https://youtu.be/3N_ywhx6_K0?t=31

Remember BF*** from PEP?
> ⇒ move one cell right
< ⇒ move one cell left
+ ⇒ increase cell by one
‐ ⇒ decrease cell by one
. ⇒ print current cell
, ⇒ input current cell
[⇒ loop begin
] ⇒ loop end

⇒ everything else is a comment

CFL 01, King’s College London – p. 10/27

A “Compiler” for BF***
> ⇒ ptr++
< ⇒ ptr‐‐
+ ⇒ (*ptr)++
‐ ⇒ (*ptr)‐‐
. ⇒ putchar(*ptr)
, ⇒ *ptr = getchar()
[⇒ while(*ptr){
] ⇒ }

⇒ ignore everything else

char field[30000]
char *ptr = &field[15000]

CFL 01, King’s College London – p. 11/27

Lectures 1 - 5

transforming strings into structured data

Lexing based on regular expressions

(recognising “words”)

Parsing
(recognising “sentences”)

CFL 01, King’s College London – p. 12/27

Stone of Rosetta

Lectures 5 - 10
code generation for a small imperative and a small
functional languages

Interpreters
(directly runs a program)

Compilers
(generates JVM code)

CFL 01, King’s College London – p. 13/27

Familiar Regular Expr.
[a‐z0‐9_\.‐]+ @ [a‐z0‐9\.‐]+ . [a‐z\.]{2,6}

re* matches 0 or more times
re+ matches 1 or more times
re? matches 0 or 1 times
re{n} matches exactly n number of times
re{n,m} matches at least n and at most m times
[...] matches any single character inside the brackets
[^...] matches any single character not inside the brackets
a‐z A‐Z character ranges
\d matches digits; equivalent to [0‐9]
. matches every character except newline
(re) groups regular expressions and remembers the

matched text
CFL 01, King’s College London – p. 14/27

ARegular Expression
… is a pattern or template for specifying strings

"https?://[^"]*"

matches for example
"http://www.foobar.com"
"https://www.tls.org"

but not
"http://www."foo"bar.com"

CFL 01, King’s College London – p. 15/27

ARegular Expression
… is a pattern or template for specifying strings

""""https?://[^"]*"""".r

matches for example
"http://www.foobar.com"
"https://www.tls.org"

but not
"http://www."foo"bar.com"

CFL 01, King’s College London – p. 15/27

Regular Expressions
Their inductive definition:

CFL 01, King’s College London – p. 16/27

r ::= 0 nothing
| 1 empty string / "" / []
| c character
| r1 + r2 alternative / choice
| r1 · r2 sequence
| r∗ star (zero or more)

Regular Expressions
Their inductive definition:

CFL 01, King’s College London – p. 16/27

r ::= 0 nothing
| 1 empty string / "" / []
| c character
| r1 + r2 alternative / choice
| r1 · r2 sequence
| r∗ star (zero or more)

abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp

Strings
…are lists of characters. For example "hello"

[h, e, l, l, o] or just hello

the empty string: [] or ""

the concatenation of two strings:

s1 @ s2

foo @ bar = foobar
baz @ [] = baz

CFL 01, King’s College London – p. 17/27

Languages, Strings
Strings are lists of characters, for example

[], abc (Pattern match: c :: s)

A language is a set of strings, for example

{[], hello, foobar, a, abc}

Concatenation of strings and languages
foo @ bar = foobar

A @ B def
= {s1 @ s2 | s1 ∈ A ∧ s2 ∈ B}

CFL 01, King’s College London – p. 18/27

TheMeaning of a
Regular Expression

CFL 01, King’s College London – p. 19/27

L(0) def
= {}

L(1) def
= {[]}

L(c) def
= {[c]}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= {s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2)}

L(r∗) def
=

⋃
0≤n L(r)n

L(r)0 def
= {[]}

L(r)n+1 def
= L(r)@ L(r)n

(append on sets)
{s1@s2 | s1 ∈ L(r) ∧ s2 ∈ L(r)n}

TheMeaning of a
Regular Expression

CFL 01, King’s College London – p. 19/27

L(0) def
= {}

L(1) def
= {[]}

L(c) def
= {[c]}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= {s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2)}

L(r∗) def
=

⋃
0≤n L(r)n

L(r)0 def
= {[]}

L(r)n+1 def
= L(r)@ L(r)n

(append on sets)
{s1@s2 | s1 ∈ L(r) ∧ s2 ∈ L(r)n}

TheMeaning of a
Regular Expression

CFL 01, King’s College London – p. 19/27

L(0) def
= {}

L(1) def
= {[]}

L(c) def
= {[c]}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= {s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2)}

L(r∗) def
=

⋃
0≤n L(r)n

L(r)0 def
= {[]}

L(r)n+1 def
= L(r)@ L(r)n (append on sets)

{s1@s2 | s1 ∈ L(r) ∧ s2 ∈ L(r)n}

TheMeaning of a
Regular Expression

CFL 01, King’s College London – p. 19/27

L(0) def
= {}

L(1) def
= {[]}

L(c) def
= {[c]}

L(r1 + r2)
def
= L(r1) ∪ L(r2)

L(r1 · r2)
def
= {s1 @ s2 | s1 ∈ L(r1) ∧ s2 ∈ L(r2)}

L(r∗) def
=

⋃
0≤n L(r)n

L(r)0 def
= {[]}

L(r)n+1 def
= L(r)@ L(r)n (append on sets)

{s1@s2 | s1 ∈ L(r) ∧ s2 ∈ L(r)n}

TheMeaning ofMatching

A regular expression rmatches a string s
provided

s ∈ L(r)

…and the point of the next lecture is to decide this
problem as fast as possible (unlike Python, Ruby,
Java)

CFL 01, King’s College London – p. 20/27

ThePower Operation

The nth Power of a language:

A0 def
= {[]}

An+1 def
= A @ An

For example
A4 = A @ A @ A @ A (@ {[]})
A1 = A (@ {[]})
A0 = {[]}

CFL 01, King’s College London – p. 21/27

Questions

Say A = {[a], [b], [c], [d]}.

How many strings are in A4 ?

What if A = {[a], [b], [c], []};
how many strings are then in A4 ?

CFL 01, King’s College London – p. 22/27

Questions

Say A = {[a], [b], [c], [d]}.

How many strings are in A4 ?

What if A = {[a], [b], [c], []};
how many strings are then in A4 ?

CFL 01, King’s College London – p. 22/27

The Star Operation
The Kleene Star of a language:

A⋆ def
=

⋃
0≤n An

This expands to

A0 ∪ A1 ∪ A2 ∪ A3 ∪ A4 ∪ . . .

or

{[]} ∪ A ∪ A@A ∪ A@A@A ∪ A@A@A@A∪ . . .

CFL 01, King’s College London – p. 23/27

Written Exam
Accounts for 80%.

The question “Is this relevant for the exam?” is very
demotivating for the lecturer!

Deal: Whatever is in the homework (and is not
marked “optional”) is relevant for the exam.

Each lecture has also a handout. There are also
handouts about notation and Scala.

CFL 01, King’s College London – p. 24/27

Coursework
Accounts for 20%. Two strands. Choose one!

Strand 1

4 programming tasks:
matcher (4%, 11.10.)
lexer (5%, 04.11.)
parser (5%, 22.11.)
compiler (6%, 13.12.)

in any lang. you like,
but I want to see the
code

Strand 2

one task: prove the
correctness of a regular
expression matcher in
the Isabelle theorem
prover
20%, submission
on 13.12.

Solving more than one strand will not give you more marks.

CFL 01, King’s College London – p. 25/27

Lecture Capture

Hope it works…

actually no, it does not!

It is important to use lecture capture wisely
(it is only the “baseline”):

Lecture recordings are a study and revision aid.
Statistically, there is a clear and direct link between
attendance and attainment: students who do not attend
lectures, do less well in exams.

Attending a lecture is more than watching it online
– if you do not attend, you miss out!

CFL 01, King’s College London – p. 26/27

Lecture Capture

Hope it works…actually no, it does not!

It is important to use lecture capture wisely
(it is only the “baseline”):

Lecture recordings are a study and revision aid.
Statistically, there is a clear and direct link between
attendance and attainment: students who do not attend
lectures, do less well in exams.

Attending a lecture is more than watching it online
– if you do not attend, you miss out!

CFL 01, King’s College London – p. 26/27

Lecture Capture

Hope it works…actually no, it does not!

It is important to use lecture capture wisely
(it is only the “baseline”):

Lecture recordings are a study and revision aid.
Statistically, there is a clear and direct link between
attendance and attainment: students who do not attend
lectures, do less well in exams.

Attending a lecture is more than watching it online
– if you do not attend, you miss out!

CFL 01, King’s College London – p. 26/27

Questions?

CFL 01, King’s College London – p. 27/27

