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There are more problems,
than there are programs.

There must be a problem for
which there is no program.
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Subsets

If A ⊆ B then A has fewer
elements than B

A ⊆ B and B ⊆ A

then A = B
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{ , , , , }

{ , , }

5 elements

3 elements
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Newton vs Feynman

classical physics quantum physics
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The Goal of the Talk

show you that something very
unintuitive happens with very large sets

convince you that there are more
problems than programs
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B = { , , , , }

A = { , , }

|A| = 5, |B| = 3
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B = { , , , , }

A = { , , }

then |A| ≤ |B|
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B = { , , , , }

A = { , , }

for = has to be a one-to-one mapping
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Cardinality

|A| def
= “how many elements”

A ⊆ B⇒ |A| ≤ |B|

if there is an injective function
f : A→ B then |A| ≤ |B|

∀xy. f(x) = f(y) ⇒ x = y
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Natural Numbers

N
def
= {0, 1, 2, 3, .......}

A is countable iff |A| ≤ |N|
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First Question

|N − {0}| ? |N|

≥ or ≤ or = ?

x 7→ x+ 1,
|N − {0}| = |N|
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|N − {0, 1}| ? |N|

|N − O| ? |N|

O
def
= odd numbers {1, 3, 5......}

E
def
= even numbers {0, 2, 4......}

CFL, King’s College London – p. 12/21



|N − {0, 1}| ? |N|

|N − O| ? |N|

O
def
= odd numbers {1, 3, 5......}

E
def
= even numbers {0, 2, 4......}

CFL, King’s College London – p. 12/21



|N − {0, 1}| ? |N|

|N − O| ? |N|

O
def
= odd numbers {1, 3, 5......}

E
def
= even numbers {0, 2, 4......}

CFL, King’s College London – p. 12/21



|N ∪−N| ? |N|

N
def
= positive numbers {0, 1, 2, 3, ......}

−N
def
= negative numbers {0,−1,−2,−3, ......}
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A is countable if there exists an
injective f : A→ N

A is uncountable if there does not
exist an injective f : A→ N

countable: |A| ≤ |N|
uncountable: |A| > |N|

Does there exist such an A ?
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Hilbert’s Hotel

…has as many rooms as there are natural numbers
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Real Numbers between
0 and 1

1

2

3

4

3 3 3 3 3 3 . . .

1 2 3 4 5 6 7

0 1 0 1 0 . . .

7 8 5 3 9 . . .

. . .

. . .

|N| < |R|
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The Set of Problems
ℵ0

1

2

3

4

0 1 2 3 4 5 . . .

0 1 0 1 0 1 . . .

0 0 0 1 1 0 0

0 0 0 0 0 . . .

1 1 0 1 1 . . .

. . .

. . .

|Progs| = |N| < |Probs|
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Halting Problem

Assume a program H that decides for all
programs A and all input data D whether

H(A,D) def
= 1 iff A(D) terminates

H(A,D) def
= 0 otherwise

CFL, King’s College London – p. 18/21



Halting Problem (2)

Given such a program H define the
following program C: for all programs A

C(A) def
= 0 iff H(A,A) = 0

C(A) def
= loops otherwise
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Contradiction

H(C,C) is either 0 or 1.

H(C,C) = 1 defH⇒ C(C) ↓ defC⇒ H(C,C) = 0

H(C,C) = 0 defH⇒ C(C) loops defC⇒
H(C,C) = 1

Contradiction in both cases. So H cannot exist.
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Take Home Points
there are sets that are more infinite than
others

even with the most powerful computer
we can imagine, there are problems that
cannot be solved by any program

in CS we actually hit quite often such
problems (halting problem)
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