
Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

CFL, King’s College London – p. 1/13



2nd CW
Remember we showed that

der c (r+) = (der c r) · r∗

Does the same hold for r{n} with n > 0

der c (r{n}) = (der c r) · r{n−1} ?

CFL, King’s College London – p. 2/13



2nd CW
Remember we showed that

der c (r+) = (der c r) · r∗

Does the same hold for r{n} with n > 0

der c (r{n}) = (der c r) · r{n−1} ?

CFL, King’s College London – p. 2/13



2nd CW
der

der c (r{n}) def
=

{
∅ if n = 0
der c (r · r{n−1}) o’wise

mkeps
mkeps(r{n}) def

= [mkeps(r), . . . ,mkeps(r)︸ ︷︷ ︸
n times

]

inj

inj r{n} c (v1, [vs])
def
= [inj r c v1 :: vs]

inj r{n} c Left(v1, [vs])
def
= [inj r c v1 :: vs]

inj r{n} c Right([v :: vs]) def
= [mkeps(r) :: inj r c v :: vs]

CFL, King’s College London – p. 3/13



Compilers in Boeings 777

They want to achieve triple redundancy in
hardware faults.

They compile 1 Ada program to
Intel 80486
Motorola 68040 (old Macintosh’s)
AMD 29050 (RISC chips used often in laser
printers)

CFL, King’s College London – p. 4/13



Proofs about Rexps
Remember their inductive definition:

r ::= ∅
| ϵ
| c
| r1 · r2
| r1 + r2
| r∗

If we want to prove something, say a property
P(r), for all regular expressions r then …

CFL, King’s College London – p. 5/13



Proofs about Rexp (2)

P holds for ∅, ϵ and c

P holds for r1 + r2 under the assumption that P
already holds for r1 and r2.

P holds for r1 · r2 under the assumption that P
already holds for r1 and r2.

P holds for r∗ under the assumption that P
already holds for r.

CFL, King’s College London – p. 6/13



zeroable(∅)
def
= true

zeroable(ϵ) def
= false

zeroable(c) def
= false

zeroable(r1 + r2)
def
= zeroable(r1) ∧ zeroable(r2)

zeroable(r1 · r2)
def
= zeroable(r1) ∨ zeroable(r2)

zeroable(r∗) def
= false

zeroable(r) if and only if L(r) = {}

CFL, King’s College London – p. 7/13



Correctness of the Matcher

We want to prove

matches r s if and only if s ∈ L(r)

where matches r s def
= nullable(ders s r)

We can do this, if we know

L(der c r) = Der c (L(r))

CFL, King’s College London – p. 8/13



Correctness of the Matcher

We want to prove

matches r s if and only if s ∈ L(r)

where matches r s def
= nullable(ders s r)

We can do this, if we know

L(der c r) = Der c (L(r))

CFL, King’s College London – p. 8/13



Induction over Strings

case []:

We need to prove
∀r. nullable(ders [] r) ⇔ [] ∈ L(r)

nullable(ders [] r) def
= nullable r ⇔ . . .

CFL, King’s College London – p. 9/13



Induction over Strings

case c :: s

We need to prove
∀r. nullable(ders (c :: s) r) ⇔ (c :: s) ∈ L(r)

We have by IH
∀r. nullable(ders s r) ⇔ s ∈ L(r)

ders (c :: s) r def
= ders s (der c r)

CFL, King’s College London – p. 10/13



Induction over Regexps

The proof hinges on the fact that we can prove

L(der c r) = Der c (L(r))

CFL, King’s College London – p. 11/13



Some Lemmas

Der c (A ∪ B) = (Der c A) ∪ (Der c B)

If [] ∈ A then
Der c (A@B) = (Der c A)@B ∪ (Der c B)

If [] ̸∈ A then
Der c (A@B) = (Der c A)@B

Der c (A∗) = (Der c A)@A∗

(interesting case)

CFL, King’s College London – p. 12/13



Why?
Why does Der c (A∗) = (Der c A)@A∗ hold?

Der c (A∗) = Der c (A∗ − {[]})
= Der c ((A− {[]})@A∗)

= (Der c (A− {[]}))@A∗

= (Der c A)@A∗

using the facts Der c A = Der c (A− {[]}) and
(A− {[]})@A∗ = A∗ − {[]}

CFL, King’s College London – p. 13/13


