
Automata and
Formal Languages (4)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

AFL 04, King’s College London, 17. October 2012 – p. 1/21



Last Week

Last week I showed you

a tokenizer taking a list of regular expressions

tokenization identifies lexeme in an input stream
of characters (or string) and cathegorizes them
into tokens

AFL 04, King’s College London, 17. October 2012 – p. 2/21



Two Rules

Longest match rule (maximal munch rule): The
longest initial substring matched by any regular
expression is taken as next token.

Rule priority: For a particular longest initial
substring, the first regular expression that can
match determines the token.

AFL 04, King’s College London, 17. October 2012 – p. 3/21



"if true then then 42 else +"

KEYWORD:
"if", "then", "else",

WHITESPACE:
" ", "\n",

IDENT:
LETTER · (LETTER + DIGIT + "_")∗

NUM:
(NONZERODIGIT · DIGIT∗) + "0"

OP:
"+"

COMMENT:
"/*" · (ALL∗ · "*/" · ALL∗) · "*/"

AFL 04, King’s College London, 17. October 2012 – p. 4/21



"if true then then 42 else +"

KEYWORD(if),
WHITESPACE,
IDENT(true),
WHITESPACE,
KEYWORD(then),
WHITESPACE,
KEYWORD(then),
WHITESPACE,
NUM(42),
WHITESPACE,
KEYWORD(else),
WHITESPACE,
OP(+)

AFL 04, King’s College London, 17. October 2012 – p. 5/21



"if true then then 42 else +"

KEYWORD(if),
IDENT(true),
KEYWORD(then),
KEYWORD(then),
NUM(42),
KEYWORD(else),
OP(+)

AFL 04, King’s College London, 17. October 2012 – p. 5/21



There is one small problem with the tokenizer.
How should we tokenize:

"x - 3"

OP:
"+", "-"

NUM:
(NONZERODIGIT · DIGIT∗) + "0"

NUMBER:
NUM + ("-" · NUM)

AFL 04, King’s College London, 17. October 2012 – p. 6/21



Deterministic Finite Automata
A deterministic finite automaton consists of:

a finite set of states
one of these states is the start state
some states are accepting states, and
there is transition function
which takes a state and a character as arguments and
produces a new state
this function might not always be defined everywhere

A(Q, q0, F, δ)

AFL 04, King’s College London, 17. October 2012 – p. 7/21



start can be an accepting state
there is no accepting state
all states are accepting

AFL 04, King’s College London, 17. October 2012 – p. 8/21



start can be an accepting state
there is no accepting state
all states are accepting

AFL 04, King’s College London, 17. October 2012 – p. 8/21



for this automaton δ is the function

(q0, a)→ q1 (q1, a)→ q4 (q4, a)→ q4
(q0, b)→ q2 (q1, b)→ q2 (q4, b)→ q4

. . .

AFL 04, King’s College London, 17. October 2012 – p. 9/21



Accepting a String
Given

A(Q, q0, F, δ)

you can define

δ̂(q, "") = q

δ̂(q, c :: s) = δ̂(δ(q, c), s)

Whether a string s is accepted by A?

δ̂(q0, s) ∈ F

AFL 04, King’s College London, 17. October 2012 – p. 10/21



Accepting a String
Given

A(Q, q0, F, δ)

you can define

δ̂(q, "") = q

δ̂(q, c :: s) = δ̂(δ(q, c), s)

Whether a string s is accepted by A?

δ̂(q0, s) ∈ F

AFL 04, King’s College London, 17. October 2012 – p. 10/21



Non-Deterministic
Finite Automata

A non-deterministic finite automaton consists
again of:

a finite set of states
one of these states is the start state
some states are accepting states, and
there is transition relation

(q1, a)→ q2
(q1, a)→ q3

(q1, ε)→ q2

AFL 04, King’s College London, 17. October 2012 – p. 11/21



AFL 04, King’s College London, 17. October 2012 – p. 12/21



∅

ε

c

AFL 04, King’s College London, 17. October 2012 – p. 13/21



r1 · r2

AFL 04, King’s College London, 17. October 2012 – p. 14/21



r1 + r2

AFL 04, King’s College London, 17. October 2012 – p. 15/21



r∗

AFL 04, King’s College London, 17. October 2012 – p. 16/21



AFL 04, King’s College London, 17. October 2012 – p. 17/21



AFL 04, King’s College London, 17. October 2012 – p. 18/21



Languages

A language is regular iff there exists a regular
expression that recognises all its strings.

not all languages are regular, e.g. anbn.

AFL 04, King’s College London, 17. October 2012 – p. 19/21



Languages

A language is regular iff there exists a regular
expression that recognises all its strings.

not all languages are regular, e.g. anbn.

AFL 04, King’s College London, 17. October 2012 – p. 19/21



Assuming you have the alphabet {a, b, c}

Give a regular expression that can recognise all
strings that have at least one b.

AFL 04, King’s College London, 17. October 2012 – p. 20/21



The star-case in our proof needs the following
lemma

Der c A∗ = (Der c A) @ A∗

If "" ∈ A, then
Der c (A @ B) = (Der c A) @ B ∪ (Der c B)

If "" 6∈ A, then
Der c (A @ B) = (Der c A) @ B

AFL 04, King’s College London, 17. October 2012 – p. 21/21


