
A Crash-Course on Notation
Characters and Strings

In this module we will often use characters. While they are surely familiar, we
will make one subtle distinction. If we want to refer to concrete characters, like
a, b and so on, we use a typewriter font. So if we want to refer to the concrete
characters of my email address we shall write

christian.urban@kcl.ac.uk

If we need to explicitly indicate the “space” character, wewrite . For example

hello world

But often we do not care about which characters we use. In such cases we us
the italic font and write a, b and so on. So if we need a representative string, we
might write

abracadabra (1)

We do not really care what the characters stand for, except we do care about is
that for example the character a is not equal to b.

An alphabet is a finite set of characters. Often the leĴer Σ is used to refer
to an alphabet. For example the ASCII characters a to z form an alphabet. The
digits 0 to 9 are another alphabet. If nothing else is specified, we usually as-
sume the alphabet consists of just the lower-case leĴers a, b, …, z. Sometimes,
however, we explicitly restrict strings to contain, for example, only the leĴers
a and b. In this case we say the alphabet is the set {a, b}.

Strings are lists of characters. Unfortunately, there are many ways how we
can write down strings. In programming languages, they are usually wriĴen
as "hello" where the double quotes indicate that we dealing with a string. But
since, strings are lists of characters we could also write this string as

[h, e, l, l, o]

The important point is that we can always decompose such strings. For exam-
ple, we will often consider the first character of a string, say h, and the “rest” of
a string say "ello"when making definitions about strings. There are some sub-
tleties with the empty string, sometimes wriĴen as "" but also as the empty list
of characters []. Two strings, for example s1 and s2, can be concatenated, which
we write as s1@s2. Suppose we are given two strings "foo" and "bar", then their
concatenation, writen "foo" @ "bar", gives "foobar". Often we will simplify our
life and just drop the double quotes whenever it is clear we are talking about
strings, writing as already in (1) just foo, bar, foobar or foo @ bar.

Some simple properties of string concatenation hold. For example the con-
catenation operation is associative, meaning

1

(s1@s2)@s3 = s1@(s2@s3)

are always equal strings. The empty string behaves like a unit element, there-
fore

s @ [] = []@ s = s

While for us strings are just lists of characters, programming languages of-
ten differentiate between the two concepts. In Scala, for example, there is the
type of String and the type of lists of characters, List[Char]. They are not
the same and we need to explicitly coerce elements between the two types, for
example

scala> "abc".toList
res01: List[Char] = List(a, b, c)

Sets and Languages

We will use the familiar operations ∪ and ∩ for sets. For the empty set we will
either write ∅ or { }. The set containing, for example, the natural numbers 1, 2
and 3 we will write as

{1, 2, 3}

The notation ∈ means element of, so 1 ∈ {1, 2, 3} is true and 3 ∈ {1, 2, 3} is
false. Sets can potentially have infinitely many elements. For example the set
of all natural numbers {0, 1, 2, . . .} is infinite. This set is often also abbreviated
as N. We can define sets by giving all elements, like {0, 1}, but also by set
comprehensions. For example the set of all even natural numbers can be defined
as

{n | n ∈ N ∧ n is even}

Though silly, but the set {0, 1, 2} could also be defined by the following set
comprehension

{n | n2 < 9 ∧ n ∈ N}

Notice that set comprehensions could be used to define set union, intersection
and difference:

A ∪ B def
= {x | x ∈ A ∨ x ∈ B}

A ∩ B def
= {x | x ∈ A ∧ x ∈ B}

A\B def
= {x | x ∈ A ∧ x ̸∈ B}

2

For defining sets, we will also often use the notion of the “big union”. An ex-
ample is as follows: ∪

0≤n
{n2, n2 + 1} (2)

which is the set of all squares and their immediate successors, so

{0, 1, 2, 4, 5, 9, 10, 16, 17, . . .}

A big union is a sequence of unions which are indexed typically by a natural
number. So the big union in (2) could equally be wriĴen as

{0, 1} ∪ {1, 2} ∪ {4, 5} ∪ {9, 10} ∪ . . .

but using the big union notation is more concise.
An important notion in thismodule areLanguages, which are sets of strings.

The main goal for us will be how to (formally) specify languages and to find
out whether a string is in a language or not. Note that the language containing
the empty string {""} is not equal to the empty language (or empty set): The
former contains one element, namely "" (also wriĴen []), but the laĴer does not
contain any.

For languages we define the operation of language concatenation, wriĴen
A@B:

A@B def
= {s1@s2 | s1 ∈ A ∧ s2 ∈ B} (3)

Be careful to understand the difference: the @ in s1@s2 is string concatenation,
while A@B refers to the concatenation of two languages (or sets of strings). As
an example suppose A = {ab, ac} and B = {zzz, qq, r}, then A @ B is

{abzzz, abqq, abr, aczzz, acqq, acr}

Recall the properties for string concatenation. For language concatenation we
have the following properties

associativity: (A@B)@C = A@(B@C)
unit element: A @ {[]} = {[]}@ A = A
zero element: A @∅ = ∅@ A = ∅

Note the difference: the empty set behaves like 0 for multiplication and the set
{[]} like 1 for multiplication.

Following the language concatenation, we can define a language power op-
eration as follows:

A0 def
= {[]}

An+1 def
= A @ An

3

This definition is by induction on natural numbers. Note carefully that the zero-
case is not defined as the empty set, but the set containing the empty string. So
no maĴer what the set A is, A0 will always be {[]}. (There is another hint about
a connection between the @-operation and multiplication: How is xn defined
and what is x0?)

Next we can define the star operation for languages: A∗ is the union of all
powers of A, or short

A∗ def
=

∪
0≤n

An

Unfolding this definition

A0 ∪ A1 ∪ A2 ∪ A3 ∪ . . .

which is equal to

{[]} ∪ A ∪ A@A ∪ A@A@A ∪ . . .

we can see that the empty string is always in A∗, no maĴer what A is. This is
because [] ∈ A0. To make sure you understand these definition, I leave you to
answer what {[]}∗ and ∅∗ are.

Recall that an alphabet is often referred to by the leĴer Σ. We can nowwrite
for the set of all strings over this alphabet Σ∗. In doing so we also include the
empty string as a possible string over Σ. So if Σ = {a, b} then Σ∗ is

{[], a, b, ab, ba, aaa, aab, aba, abb, baa, bab, . . .}

or in other words all strings containing as and bs only.

4

