# Compilers and Formal Languages (10)

Email: christian.urban at kcl.ac.ukOffice: N7.07 (North Wing, Bush House)Slides: KEATS (also home work is there)

# Are there more strings in $L(a^*)$ or $L((a+b)^*)$ ?

# There are more problems, than there are programs.

There are more problems, than there are programs.

There must be a problem for which there is no program.

**Subsets** 

# If $A \subseteq B$ then A has fewer or equal elements than B

 $A \subseteq B$  and  $B \subseteq A$ then A = B





3 elements

CFL 10, King's College London – p. 5/22

#### **Newton vs Feynman**



classical physics



quantum physics

# The Goal of the Talk

 show you that something very unintuitive happens with very large sets

• convince you that there are more **problems** than **programs** 

# $B = \{ \bigcirc, \bigotimes, \bigotimes, \bigotimes, \bigotimes, \bigotimes \}$

# $\mathsf{A} = \{ \textcircled{\bullet}, \textcircled{\bullet}, \textcircled{\bullet} \}$

# |A| = 5, |B| = 3

CFL 10, King's College London - p. 8/22



# then $|A| \leq |B|$

CFL 10, King's College London - p. 8/22



#### for = has to be a **one-to-one** mapping

# Cardinality

# $|A| \stackrel{\text{\tiny def}}{=}$ "how many elements" $A \subseteq B \Rightarrow |A| \leq |B|$

# Cardinality

- $|A| \stackrel{\text{\tiny def}}{=}$  "how many elements"
- $A \subseteq B \Rightarrow |A| \le |B|$
- if there is an injective function  $f: A \rightarrow B$  then  $|A| \leq |B|$ 
  - $\forall xy. f(x) = f(y) \Rightarrow x = y$







# then |A| = |B|

CFL 10, King's College London - p. 10/22

### **Natural Numbers**

 $\mathbb{N} \stackrel{\text{\tiny def}}{=} \{0, 1, 2, 3, \dots \}$ 

## **Natural Numbers**

# $\mathbb{N} \stackrel{\text{\tiny def}}{=} \{0, 1, 2, 3, \dots\}$ A is countable iff $|\mathsf{A}| \leq |\mathbb{N}|$

## **First Question**

# $|\mathbb{N} - \{0\}|$ ? $|\mathbb{N}|$

 $\geq$  or  $\leq$  or = ?

CFL 10, King's College London – p. 12/22

## **First Question**

# $|\mathbb{N} - \{0\}|$ ? $|\mathbb{N}|$

 $\geq$  or  $\leq$  or = ?

 $x \mapsto x + 1$ ,  $|\mathbb{N} - \{0\}| = |\mathbb{N}|$ 

CFL 10, King's College London - p. 12/22

# $|\mathbb{N} - \{0, 1\}|$ ? $|\mathbb{N}|$

# $|\mathbb{N} - \{0, 1\}| ? |\mathbb{N}|$ $|\mathbb{N} - \mathbb{O}| ? |\mathbb{N}|$

 $O \stackrel{\text{def}}{=} \text{odd numbers} \{1, 3, 5.....\}$ 

# $|\mathbb{N} - \{0, 1\}| ? |\mathbb{N}|$ $|\mathbb{N} - \mathbb{O}| ? |\mathbb{N}|$

# $|\mathbb{N} \cup -\mathbb{N}|$ ? $|\mathbb{N}|$

 $\mathbb{N} \stackrel{\text{def}}{=} \text{positive numbers} \quad \{0, 1, 2, 3, \dots\} \\ -\mathbb{N} \stackrel{\text{def}}{=} \text{negative numbers} \quad \{0, -1, -2, -3, \dots\}$ 

A is countable if there exists an injective  $f: A \rightarrow \mathbb{N}$ 

A is uncountable if there does not exist an injective  $f : A \rightarrow \mathbb{N}$ 

countable:  $|A| \leq |\mathbb{N}|$ uncountable:  $|A| > |\mathbb{N}|$  A is countable if there exists an injective  $f: A \rightarrow \mathbb{N}$ 

A is uncountable if there does not exist an injective  $f : A \rightarrow \mathbb{N}$ 

countable:  $|A| \leq |\mathbb{N}|$ uncountable:  $|A| > |\mathbb{N}|$ 

Does there exist such an A?

# **Hilbert's Hotel**



#### • ...has as many rooms as there are natural numbers

| 1 | 3 | 3 | 3 | 3 | 3 | 3   | ••• |  |
|---|---|---|---|---|---|-----|-----|--|
| 2 | 1 | 2 | 3 | 4 | 5 | 6   | 7   |  |
| 3 | 0 | 1 | 0 | 1 | 0 | ••• |     |  |
| 4 | 7 | 8 | 5 | 3 | 9 | ••• |     |  |

| 1 | 4 | 3 | 3 | 3 | 3 | 3   | ••• |  |
|---|---|---|---|---|---|-----|-----|--|
| 2 | 1 | 2 | 3 | 4 | 5 | 6   | 7   |  |
| 3 | 0 | 1 | 0 | 1 | 0 | ••• |     |  |
| 4 | 7 | 8 | 5 | 3 | 9 | ••• |     |  |

| 1 | 4 | 3 | 3 | 3 | 3 | 3   | ••• |  |
|---|---|---|---|---|---|-----|-----|--|
| 2 | 1 | 3 | 3 | 4 | 5 | 6   | 7   |  |
| 3 | 0 | 1 | 0 | 1 | 0 | ••• |     |  |
| 4 | 7 | 8 | 5 | 3 | 9 | ••• |     |  |

| 1 | 4 | 3 | 3 | 3 | 3 | 3   | ••• |  |
|---|---|---|---|---|---|-----|-----|--|
| 2 | 1 | 3 | 3 | 4 | 5 | 6   | 7   |  |
| 3 | 0 | 1 | 1 | 1 | 0 | ••• |     |  |
| 4 | 7 | 8 | 5 | 3 | 9 | ••• |     |  |

| 1 | 4 | 3 | 3 | 3 | 3 | 3   | ••• |  |
|---|---|---|---|---|---|-----|-----|--|
| 2 | 1 | 3 | 3 | 4 | 5 | 6   | 7   |  |
| 3 | 0 | 1 | 1 | 1 | 0 | ••• |     |  |
| 4 | 7 | 8 | 5 | 4 | 9 | ••• |     |  |

| 1 | 4 | 3 | 3 | 3 | 3 | 3   | ••• | ••• |
|---|---|---|---|---|---|-----|-----|-----|
| 2 | 1 | 3 | 3 | 4 | 5 | 6   | 7   |     |
| 3 | 0 | 1 | 1 | 1 | 0 | ••• |     |     |
| 4 | 7 | 8 | 5 | 4 | 9 | ••• |     |     |

 $|\mathbb{N}| < |R|$ 

# **The Set of Problems**

 $\aleph_0$ 

|   | 0 | 1 | 2 | 3 | 4 | 5   | ••• |       |
|---|---|---|---|---|---|-----|-----|-------|
| 1 | 0 | 1 | 0 | 1 | 0 | 1   | ••• | • • • |
| 2 | 0 | 0 | 0 | 1 | 1 | 0   | 0   |       |
| 3 | 0 | 0 | 0 | 0 | 0 | ••• |     |       |
| 4 | 1 | 1 | 0 | 1 | 1 | ••• |     |       |

. . .

CFL 10, King's College London - p. 18/22

# **The Set of Problems**

 $\aleph_0$ 

|   | 0 | 1 | 2 | 3 | 4 | 5   | ••• |  |
|---|---|---|---|---|---|-----|-----|--|
| 1 | 0 | 1 | 0 | 1 | 0 | 1   | ••• |  |
| 2 | 0 | 0 | 0 | 1 | 1 | 0   | 0   |  |
| 3 | 0 | 0 | 0 | 0 | 0 | ••• |     |  |
| 4 | 1 | 1 | 0 | 1 | 1 | ••• |     |  |

• • •

 $|Progs| = |\mathbb{N}| < |Probs|$ 

# **Halting Problem**

- Assume a program *H* that decides for all programs *A* and all input data *D* whether
- H(A, D) <sup>def</sup> = 1 iff A(D) terminates
  H(A, D) <sup>def</sup> = 0 otherwise

# Halting Problem (2)

- Given such a program *H* define the following program *C*: for all programs *A*
- $C(A) \stackrel{\text{def}}{=} 0$  iff H(A, A) = 0•  $C(A) \stackrel{\text{def}}{=}$  loops otherwise

# Contradiction

H(C, C) is either 0 or 1.•  $H(C, C) = 1 \stackrel{\text{def}H}{\Rightarrow} C(C) \downarrow \stackrel{\text{def}C}{\Rightarrow} H(C, C) = 0$ •  $H(C, C) = 0 \stackrel{\text{def}H}{\Rightarrow} C(C) \text{ loops } \stackrel{\text{def}C}{\Rightarrow}$  H(C, C) = 1Contradiction in both cases. So H cannot exist.

# **Take Home Points**

- there are sets that are more infinite than others
- even with the most powerful computer we can imagine, there are problems that cannot be solved by any program

• in CS we actually hit quite often such problems (halting problem)