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Are there more strings in L(a∗) or
L((a+ b)∗)?
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There are more problems, than there
are programs.

There must be a problem for which
there is no program.
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Subsets

If A ⊆ B then A has fewer or equal
elements than B

A ⊆ B and B ⊆ A

then A = B
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{ , , , , }

{ , , }

5 elements

3 elements
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Newton vs Feynman

classical physics quantum physics

CFL 10, King’s College London – p. 6/22



TheGoal of the Talk

show you that something very unintuitive
happens with very large sets

convince you that there are more problems
than programs
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B= { , , , , }

A= { , , }

|A|= 5, |B|= 3
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B= { , , , , }

A= { , , }

then |A| ≤ |B|
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B= { , , , , }

A= { , , }

for= has to be a one-to-onemapping
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Cardinality

|A| def

= “how many elements”

A ⊆ B ⇒ |A| ≤ |B|

if there is an injective function
f : A → B then |A| ≤ |B|

∀xy. f(x) = f(y) ⇒ x = y
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A= { , , }

B= { , , }

then |A|= |B|
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Natural Numbers

N
def

= {0, 1, 2, 3, .......}

A is countable iff |A| ≤ |N|
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First Question

|N − {0}| ? |N|

≥ or≤ or= ?

x 7→ x+ 1,
|N − {0}|= |N|
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|N − {0, 1}| ? |N|

|N − O| ? |N|

O
def
= odd numbers {1, 3, 5......}

E
def
= even numbers {0, 2, 4......}
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|N ∪−N| ? |N|

N
def
= positive numbers {0, 1, 2, 3, ......}

−N
def
= negative numbers {0,−1,−2,−3, ......}
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A is countable if there exists an injective
f : A → N

A is uncountable if there does not exist
an injective f : A → N

countable: |A| ≤ |N|
uncountable: |A| > |N|

Does there exist such an A ?
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Hilbert’s Hotel

…has as many rooms as there are natural numbers
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Real Numbers between
0 and 1

1

2

3

4

3 3 3 3 3 3 . . .

1 2 3 4 5 6 7

0 1 0 1 0 . . .

7 8 5 3 9 . . .

. . .

. . .

|N| < |R|
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The Set of Problems
ℵ0

1

2

3

4

0 1 2 3 4 5 . . .

0 1 0 1 0 1 . . .

0 0 0 1 1 0 0

0 0 0 0 0 . . .

1 1 0 1 1 . . .

. . .

. . .

|Progs|= |N|< |Probs|

CFL 10, King’s College London – p. 18/22



The Set of Problems
ℵ0

1

2

3

4

0 1 2 3 4 5 . . .

0 1 0 1 0 1 . . .

0 0 0 1 1 0 0

0 0 0 0 0 . . .

1 1 0 1 1 . . .

. . .

. . .

|Progs|= |N|< |Probs|
CFL 10, King’s College London – p. 18/22



Halting Problem

Assume a program H that decides for all
programs A and all input data Dwhether

H(A,D) def
= 1 iff A(D) terminates

H(A,D) def
= 0 otherwise
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Halting Problem (2)

Given such a program H define the following
program C: for all programs A

C(A) def
= 0 iff H(A,A) = 0

C(A) def
= loops otherwise
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Contradiction

H(C, C) is either 0 or 1.

H(C, C) = 1
defH⇒ C(C) ↓ def C⇒ H(C, C) = 0

H(C, C) = 0
defH⇒ C(C) loops

def C⇒
H(C, C) = 1

Contradiction in both cases. So H cannot exist.
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Take Home Points
there are sets that are more infinite than
others

even with the most powerful computer we
can imagine, there are problems that cannot
be solved by any program

in CS we actually hit quite often such
problems (halting problem)
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