
Compilers and
Formal Languages (9)

Email: christian.urban at kcl.ac.uk
Office Hours: Thursdays 12 – 14
Location: N7.07 (North Wing, Bush House)
Slides & Progs: KEATS (also homework is there)

CFL 09, King’s College London – p. 1/27

Functional Programming

CFL 09, King’s College London – p. 2/27

def fib(n) = if n == 0 then 0
else if n == 1 then 1
else fib(n ‐ 1) + fib(n ‐ 2);

def fact(n) = if n == 0 then 1 else n * fact(n ‐ 1);

def ack(m, n) = if m == 0 then n + 1
else if n == 0 then ack(m ‐ 1, 1)
else ack(m ‐ 1, ack(m, n ‐ 1));

def gcd(a, b) = if b == 0 then a else gcd(b, a % b);

Factorial on the JVM

CFL 09, King’s College London – p. 3/27

.method public static facT(II)I

.limit locals 2

.limit stack 6
iload 0
ldc 0
if_icmpne If_else_2
iload 1
goto If_end_3

If_else_2:
iload 0
ldc 1
isub
iload 0
iload 1
imul
invokestatic fact/fact/facT(II)I

If_end_3:
ireturn

.end method

def facT(n, acc) =
if n == 0 then acc
else facT(n ‐ 1, n * acc);

LLVM

Chris Lattner, Vikram Adve (started in 2000)
Apple hired Lattner in 2006
modular architecture, LLVM-IR
lli and llc

CFL 09, King’s College London – p. 4/27

LLVM: Overview

LLVM-IR
Optimisations

C++

C

...

Haskell

x86

ARM

MIPS

RISC

Power PC

...

CFL 09, King’s College London – p. 5/27

LLVM-IR
define i32 @fact (i32 %n) {

%tmp_19 = icmp eq i32 %n, 0
br i1 %tmp_19, label %if_br_23, label %else_br_24

if_br_23:
ret i32 1

else_br_24:
%tmp_21 = sub i32 %n, 1
%tmp_22 = call i32 @fact (i32 %tmp_21)
%tmp_20 = mul i32 %n, %tmp_22
ret i32 %tmp_20

}

CFL 09, King’s College London – p. 6/27

def fact(n) =
if n == 0 then 1
else n * fact(n ‐ 1)

LLVMTypes
boolean i1
byte i8
short i16
char i16
integer i32
long i64
float float
double double
*_ pointer to
**_ pointer to a pointer to
[_] arrays of

CFL 09, King’s College London – p. 7/27

LLVM Instructions

br i1 %var, label %if_br, label %else_br

icmp eq i32 %x, %y ; for equal
icmp sle i32 %x, %y ; signed less or equal
icmp slt i32 %x, %y ; signed less than
icmp ult i32 %x, %y ; unsigned less than

%var = call i32 @foo(...args...)

CFL 09, King’s College London – p. 8/27

SSA Format

(1+ a) + (3+ (b ∗ 5))

let tmp0 = add 1 a in
let tmp1 = mul b 5 in
let tmp2 = add 3 tmp1 in
let tmp3 = add tmp0 tmp2 in

tmp3

CFL 09, King’s College London – p. 9/27

Abstract Syntax Trees

// Fun language (expressions)
abstract class Exp
abstract class BExp

case class Call(name: String, args: List[Exp]) extends Exp
case class If(a: BExp, e1: Exp, e2: Exp) extends Exp
case class Write(e: Exp) extends Exp
case class Var(s: String) extends Exp
case class Num(i: Int) extends Exp
case class Aop(o: String, a1: Exp, a2: Exp) extends Exp
case class Sequence(e1: Exp, e2: Exp) extends Exp
case class Bop(o: String, a1: Exp, a2: Exp) extends BExp

CFL 09, King’s College London – p. 10/27

K-(Intermediate)Language

abstract class KExp
abstract class KVal

case class KVar(s: String) extends KVal
case class KNum(i: Int) extends KVal
case class Kop(o: String, v1: KVal, v2: KVal) extends KVal
case class KCall(o: String, vrs: List[KVal]) extends KVal
case class KWrite(v: KVal) extends KVal

case class KIf(x1: String, e1: KExp, e2: KExp) extends KExp
case class KLet(x: String, v: KVal, e: KExp) extends KExp
case class KReturn(v: KVal) extends KExp

CFL 09, King’s College London – p. 11/27

CPS-Translation

def CPS(e: Exp)(k: KVal => KExp) : KExp =
e match { ... }

let tmp0 = add 1 a in
let tmp1 = mul □ 5 in
let tmp2 = add 3 tmp1 in
let tmp3 = add tmp0 tmp2 in

KReturn tmp3

CFL 09, King’s College London – p. 12/27

CPS-Translation
def CPS(e: Exp)(k: KVal => KExp) : KExp =

e match {
case Var(s) => k(KVar(s))
case Num(i) => k(KNum(i))
...

}

let tmp0 = add 1 a in
let tmp1 = mul □ 5 in
let tmp2 = add 3 tmp1 in
let tmp3 = add tmp0 tmp2 in

KReturn tmp3

CFL 09, King’s College London – p. 13/27

CPS-Translation
def CPS(e: Exp)(k: KVal => KExp) : KExp = e match {

case Aop(o, e1, e2) => {
val z = Fresh("tmp")
CPS(e1)(y1 =>

CPS(e2)(y2 =>
KLet(z, Kop(o, y1, y2), k(KVar(z)))))

} ...
}

...
let z = op □y1 □y2
let tmp0 = add 1 a in
let tmp1 = mul □z 5 in
let tmp2 = add 3 tmp1 in
let tmp3 = add tmp0 tmp2 in

KReturn tmp3

CFL 09, King’s College London – p. 14/27

CPS-Translation
def CPS(e: Exp)(k: KVal => KExp) : KExp =

e match {
case Sequence(e1, e2) =>

CPS(e1)(_ => CPS(e2)(y2 => k(y2)))
...

}

let tmp0 = add 1 a in
let tmp1 = mul □ 5 in
let tmp2 = add 3 tmp1 in
let tmp3 = add tmp0 tmp2 in

KReturn tmp3

CFL 09, King’s College London – p. 15/27

CPS-Translation
def CPS(e: Exp)(k: KVal => KExp) : KExp =

e match {
...
case Sequence(e1, e2) =>

CPS(e1)(_ => CPS(e2)(y2 => k(y2)))
...

}

let tmp0 = add 1 a in
let tmp1 = mul □ 5 in
let tmp2 = add 3 tmp1 in
let tmp3 = add tmp0 tmp2 in

KReturn tmp3

CFL 09, King’s College London – p. 16/27

CPS-Translation
def CPS(e: Exp)(k: KVal => KExp) : KExp =

e match {
...
case If(Bop(o, b1, b2), e1, e2) => {

val z = Fresh("tmp")
CPS(b1)(y1 =>

CPS(b2)(y2 =>
KLet(z, Kop(o, y1, y2),

KIf(z, CPS(e1)(k), CPS(e2)(k)))))
}

...
}

CFL 09, King’s College London – p. 17/27

Using a compiler,
how can you mount the
perfect attack against a system?

CFL 09, King’s College London – p. 18/27

What is a perfect attack?

1 you can potentially completely take over a target system
2 your attack is (nearly) undetectable
3 the victim has (almost) no chance to recover

CFL 09, King’s College London – p. 19/27

clean
compiler

login
(src)

login
(bin)■

CFL 09, King’s College London – p. 20/27

clean
compiler

login
(src)

login
(bin)

■

CFL 09, King’s College London – p. 20/27

hacked
compiler

login
(src)

login
(bin)■

CFL 09, King’s College London – p. 20/27

V0.01

Scala

host language

my compiler (src)

V0.02

Scala

…
V1.00

Scala

V1.00

V1.01

V1.01

V1.02

…

…

no host language
needed

CFL 09, King’s College London – p. 21/27

V0.01

Scala

host language

my compiler (src)
V0.02

Scala

…
V1.00

Scala

V1.00

V1.01

V1.01

V1.02

…

…

no host language
needed

CFL 09, King’s College London – p. 21/27

V0.01

Scala

host language

my compiler (src)
V0.02

Scala

…
V1.00

Scala

V1.00

V1.01

V1.01

V1.02

…

…

no host language
needed

CFL 09, King’s College London – p. 21/27

V0.01

Scala

host language

my compiler (src)
V0.02

Scala

…
V1.00

Scala

V1.00

V1.01

V1.01

V1.02

…

…

no host language
needed

CFL 09, King’s College London – p. 21/27

Hacking Compilers

KenThompson
Turing Award, 1983

Ken Thompson showed how to hide a Tro-
janHorse in a compilerwithout leaving any
traces in the source code.

No amount of source level verification will
protect you from such Thompson-hacks.

CFL 09, King’s College London – p. 22/27

Hacking Compilers

KenThompson
Turing Award, 1983

Ken Thompson showed how to hide a Tro-
janHorse in a compilerwithout leaving any
traces in the source code.

No amount of source level verification will
protect you from such Thompson-hacks.

CFL 09, King’s College London – p. 22/27

1) Assume you ship the compiler as
binary and also with sources.

2) Make the compiler aware when it
compiles itself.

3) Add the Trojan horse.
4) Compile.
5) Delete Trojan horse from the sources

of the compiler.
6) Go on holiday for the rest of your life.

;o)

Hacking Compilers

KenThompson
Turing Award, 1983

Ken Thompson showed how to hide a Tro-
janHorse in a compilerwithout leaving any
traces in the source code.

No amount of source level verification will
protect you from such Thompson-hacks.

CFL 09, King’s College London – p. 22/27

Dijkstra on Testing

“Program testing can be a very effective way to show
the presence of bugs, but it is hopelessly inadequate
for showing their absence.”

What is good about compilers: the either seem to work, or go
horribly wrong (most of the time).

CFL 09, King’s College London – p. 23/27

Proving Programs to be Correct
Theorem: There are infinitely many prime numbers.

Proof…

similarly

Theorem: The program is doing what it is supposed to be
doing.

Long, long proof…

This can be a gigantic proof. The only hope is to have help from the
computer. ‘Program’ is here to be understood to be quite general
(compiler, OS, …).

CFL 09, King’s College London – p. 24/27

CanThis Be Done?

in 2008, verification of a small C-compiler
“if my input program has a certain behaviour, then the
compiled machine code has the same behaviour”
is as good as gcc ‐O1, but much, much less buggy

CFL 09, King’s College London – p. 25/27

Fuzzy Testing C-Compilers
tested GCC, LLVM and others by randomly generating
C-programs
found more than 300 bugs in GCC and also many in
LLVM (some of them highest-level critical)

about CompCert:

“The striking thing about our CompCert results is that the
middle-end bugs we found in all other compilers are absent. As of
early 2011, the under-development version of CompCert is the
only compiler we have tested for which Csmith cannot find
wrong-code errors. This is not for lack of trying: we have devoted
about six CPU-years to the task.”

CFL 09, King’s College London – p. 26/27

NextWeek

Revision Lecture

How many strings are in L(a∗)?

How many strings are in L((a+ b)∗)?
Are there more than in L(a∗)?

CFL 09, King’s College London – p. 27/27

NextWeek

Revision Lecture

How many strings are in L(a∗)?

How many strings are in L((a+ b)∗)?
Are there more than in L(a∗)?

CFL 09, King’s College London – p. 27/27

