Compilers and
Formal Languages

Email: christian.urban at kcl.ac.uk
Slides & Progs: KEATS (also homework is there)

1 Introduction, Languages 6 While-Language
2 Regular Expressions, Derivatives 7 Compilation, JVM
3 Automata, Regular Languages | 8 Compiling Functional Languages |
4 Lexing, Tokenising 9 Optimisations
5 Grammars, Parsing 10 LLVM

Functional Programming

def fib(n) = if n == @ then ©
else if n == 1 then 1
else fib(n - 1) + fib(n - 2);

def fact(n) = if n == @ then 1 else n * fact(n - 1);

def ack(m, n) if m == @ then n + 1
else if n == @ then ack(m - 1, 1)

else ack(m - 1, ack(m, n - 1));

def gcd(a, b) = if b == @ then a else gcd(b, a % b);

Fun-Grammar

Exp ::= Var | Num
| Exp+ Exp | .. | (Exp)
| if BExp then Exp else Exp
| write Exp
|

Exp; Exp | FunName (Exp, ..., Exp)
BExp ::= ..
Def ::= def FunName (X, .., x,) = Exp
Prog ::= Def ;Prog | Exp;Prog | Exp

Abstract Syntax Trees

abstract class Exp
abstract class BExp
abstract class Decl

case class Var(s: String) extends Exp

case class Num(i: Int) extends Exp

case class Aop(o: String, al: Exp, a2: Exp) extends Exp
case class If(a: BExp, el: Exp, e2: Exp) extends Exp

case class Write(e: Exp) extends Exp

case class Sequ(el: Exp, e2: Exp) extends Exp

case class Call(name: String, args: List[Exp]) extends Exp

case class Bop(o: String, al: Exp, a2: Exp) extends BExp

case class Def(name: String,
args: List[String],
body: Exp) extends Decl
case class Main(e: Exp) extends Decl

Ideas

Use separate JVM methods for each Fun-function.

Compile exps such that the result of the expression
is on top of the stack.

write(1l + 2)
1+ 2; 3+4

Sequences

Compiling expl ; exp2:

compile(expl)

pop
compile(exp2)

Write

Compiling call towrite(1+2):

compile(1+2)
dup
invokestatic XXX/XXX/write(I)V

needs the helper method

.method public static write(I)V
.1limit locals 1
.limit stack 2
getstatic java/lang/System/out Ljava/io/PrintStream;
iload ©
invokevirtual java/io/PrintStream/println(I)V
return
.end method

Function Definitions

.method public static write(I)V
.limit locals 1
.1limit stack 2
getstatic java/lang/System/out Ljava/io/PrintStream;
iload o
invokevirtual java/io/PrintStream/println(I)V
return
.end method

We will need methods for definitions like

def fname (x1, ... , Xn) = ...

.method public static fname (I...I)I
.1limit locals ??
.1limit stack ??
??

.end method

Stack Estimation

estimate(n) =1
estimate(x) =
estimate(a aop a,) &f estimate(ay) + estimate(a,)
estimate(if b then e; else e;) dof estimate(b)+
max (estimate(eq), estimate(e;))

estimate(write(e)) & estimate(e) + 1
estimate(eq; e;) &' max(estimate (e,), estimate e,)

def

estimate(f(eq, ..., en)) = Y., estimate(e;)

estimate(a, bop a;) & estimate(a;) + estimate(a,)

Successor Function

.method public static suc(I)I
.1limit locals 1
.1limit stack 2

iload ©

ldc 1

iadd

ireturn

.end method
def suc(x) = x + 1;

Addition Function

.method public static add(II)I
.1limit locals 2
.limit stack 5

iload ©

1dc ©

if_icmpne If_else

iload 1
goto If_end def add(x, y) =
If_else: if x == @ then y

iload o else suc(add(x - 1, y));
ldc 1

isub
iload 1
invokestatic XXX/XXX/add(II)I
invokestatic XXX/XXX/suc(I)I
If_end:
ireturn
.end method

.method public static facT(II)I Factorlal

.1limit locals 2
.1limit stack 6
iload ©
1dc o
if_icmpne If_else_2
iload 1
goto If_end_3

If_else_2:
iload @ def facT(n, acc) =

ldc 1 if n == @ then acc
isub else facT(n - 1, n * acc);
iload ©

iload 1

imul

invokestatic fact/fact/facT(II)I
If_end_3:

ireturn
.end method

.method public static facT(II)I
.1limit locals 2
.1limit stack 6

facT_Start:

iload o

1ldc o

if_icmpne If_else_2
iload 1

goto If_end_3

If_else_2:
iload © def facT(n, acc) =

ldc 1 if n == @ then acc
isub else facT(n - 1, n * acc);

[goto facT_StaPt]

T and 22

Tail Recursion

A call to f(args) is usually compiled as

args onto stack
invokestatic .../f

Tail Recursion

A call to f(args) is usually compiled as

args onto stack
invokestatic .../f

A callis in tail position provided:

if Bexp then else

Exp ; |Exp
Exp op Exp
then a call f(args) can be compiled as

prepare environment
jump to start of function

Tail Recursive Call

def compile_expT(a: Exp, env: Mem, name: String): Instrs =

case Call(n, args) => if (name == n)
{
val stores =
args.zipWithIndex.map { case (x, y) => i"istore $y" }

args.map(a => compile_expT(a, env, "")).mkString ++
stores.reverse.mkString ++
i"goto ${n}_Start"

} else {
val is = "I" * args.length
args.map(a => compile_expT(a, env, "")).mkString ++
i"invokestatic XXX/XXX/${n}(${is})I"

Dijkstra on Testing

“Program testing can be a very effective way to show
the presence of bugs, but it is hopelessly inadequate
for showing their absence.”

What is good about compilers: the either seem to work, or go
horribly wrong (most of the time).

Proving Programs to be Correct

[Theorem: There are infinitely many prime numbers.

Proof ...

similarly

Theorem: The program is doing what it is supposed to be
doing.

Long, long proof ...

This can be a gigantic proof. The only hope is to have help
from the computer. ‘Program’ is here to be understood to be
quite general (compiler, OS, ...).

Can This Be Done?

in 2008, verification of a small C-compiler
“if my input program has a certain behaviour, then the
compiled machine code has the same behaviour”
is as good as gcc -01, but much, much less buggy

Fuzzy Testing C-Compilers
tested GCC, LLVM and others by randomly
generating C-programs
found more than 300 bugs in GCC and also many in
LLVM (some of them highest-level critical)

about CompCert:

(“The striking thing about our CompCert results is that the
middle-end bugs we found in all other compilers are absent.
As of early 2011, the under-development version of
CompCert is the only compiler we have tested for which
Csmith cannot find wrong-code errors. This is not for lack of
trying: we have devoted about six CPU-years to the task.”

CFL 09, King's College London — p. 20/19

CFL 09, King's College London — p. 20/19

CFL 09, King's College London — p. 20/19

CFL 09, King's College London — p. 20/19

CFL 09, King's College London — p. 20/19

CFL 09, King's College London — p. 20/19

CFL 09, King's College London — p. 20/19

CFL 09, King's College London — p. 20/19

CFL 09, King's College London — p. 20/19

CFL 09, King's College London — p. 20/19

CFL 09, King's College London — p. 20/19

CFL 09, King's College London — p. 20/19

CFL 09, King's College London — p. 20/19

