
Handout 4 (Sulzmann & Lu Algorithm)
So far our algorithmbased onderivatives is only able to say yes or nodepending
on whether a string is matched by a regular expression or not. Often a more
interesting question is to find out how a regular expression matched a string?
Answering this questionwill also help uswith the problemwe are after, namely
tokenising an input string.

The algorithm we will be looking at in this lecture was designed by Sulz‑
mann&Lu in a rather recent research paper (from 2014). A link to it is provided
on KEATS, in case you are interested.1 My former PhD student Fahad Ausaf
and I even more recently wrote a paper where we build on their result: we
provided a mathematical proof that their algorithm is really correct—the proof
Sulzmann & Lu had originally given contained major flaws. Such correctness
proofs are important: Kuklewicz maintains a unit‑test library for the kind of al‑
gorithms we are interested in here and he showed that many implementations
in the “wild” are buggy, that is not satisfy his unit tests:

http://www.haskell.org/haskellwiki/Regex_Posix

Coming back to the algorithm by Sulzmann & Lu, their idea is to introduce
values for producing an answer for how a regular expressionmatches a string. So
rather than a boolean like in the Brzozowski algorithm, a value will be the out‑
put of the Sulzman & Lu algorithm whenever the regular expression matches
the string. If the string does not match the string, an error will be raised. The
definition for values is given below. They are shown together with the regular
expressions r to which they correspond:

regular expressions

r ::= 0
| 1
| c
| r1 · r2
| r1 + r2

| r∗

values

v ::=
Empty

| Char(c)
| Seq(v1, v2)
| Left(v)
| Right(v)
| Stars [v1, . . . vn]

There is no value for the 0 regular expression, since it does notmatch any string.
Otherwise there is exactly one value corresponding to each regular expression
with the exception of r1 + r2 where there are two values, namely Left(v) and
Right(v) corresponding to the two alternatives. Note that r∗ is associated with
a list of values, one for each copy of r that was needed to match the string. This
means wemight also return the empty list Stars [], if no copywas needed for r∗.

© Christian Urban, King’s College London, 2014, 2015, 2016, 2017, 2019
1In my humble opinion this is an interesting instance of the research literature: it contains a

very neat idea, but its presentation is rather sloppy. In earlier versions of this paper, a King’s
undergraduate student and I found several rather annoying typos in the examples and definitions.

1

http://www.haskell.org/haskellwiki/Regex_Posix

r1 r2
der a

r3
der b

r4
der c

nullable

v4v3
inj c

v2
inj b

v1
inj a

mkeps

Figure 1: The two phases of the algorithm by Sulzmann & Lu.

For sequence, there is exactly one value, composed of two component values
(v1 and v2).

My implementation of regular expressions and values in Scala is shown be‑
low. I use the convention that regular expressions are written entirely with
upper‑case letters, whereas values start with a single upper‑case character and
the rest are lower‑case letters.

abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp

abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val

Graphically the algorithm by Sulzmann & Lu can be illustrated by the pic‑
ture in Figure 1 where the path from the left to the right involving der/nullable
is the first phase of the algorithm and mkeps/inj, the path from right to left, the
second phase. This picture shows the steps requiredwhen a regular expression,
say r1, matches the string abc. We first build the three derivatives (according
to a, b and c). We then use nullable to find out whether the resulting regular
expression can match the empty string. If yes, we call the function mkeps. The
mkeps function calculates a value for how a regular expression has matched the
empty string. Its definition is as follows:

2

mkeps(1) def
= Empty

mkeps(r1 + r2)
def
= if nullable(r1)

then Left(mkeps(r1))
else Right(mkeps(r2))

mkeps(r1 · r2)
def
= Seq(mkeps(r1),mkeps(r2))

mkeps(r∗) def
= Stars []

There are no cases for 0 and c, since these regular expression cannot match the
empty string. Note also that in case of alternatives we give preference to the
regular expression on the left‑hand side. This will become important later on.

The second phase of the algorithm is organised so that it will calculate a
value for how the derivative regular expression has matched a string. For this
we need a function that reverses this “chopping off” for values which we did
in the first phase for derivatives. The corresponding function is called inj (short
for injection). This function takes three arguments: the first one is a regular
expression for which we want to calculate the value, the second is the character
we want to inject and the third argument is the value where we will inject the
character into. The result of this function is a new value. The definition of inj
is as follows:

inj (c) c Empty def
= Char c

inj (r1 + r2) c Left(v) def
= Left(inj r1 c v)

inj (r1 + r2) c Right(v) def
= Right(inj r2 c v)

inj (r1 · r2) c Seq(v1, v2)
def
= Seq(inj r1 c v1, v2)

inj (r1 · r2) c Left(Seq(v1, v2))
def
= Seq(inj r1 c v1, v2)

inj (r1 · r2) c Right(v) def
= Seq(mkeps(r1), inj r2 c v)

inj (r∗) c Seq(v, Stars vs) def
= Stars(inj r c v :: vs)

This definition is by recursion on the regular expression and by analysing the
shape of the values. Therefore there are three cases for sequence regular expres‑
sions (for all possible shapes of the value we can encounter). The last clause for
the star regular expression returns a list where the first element is inj r c v and
the other elements are vs. That means _ :: _ should be read as list cons.

To understand what is going on, it might be best to do some example cal‑
culations and compare them with Figure 1. For this note that we have not yet
dealt with the need of simplifying regular expressions (this will be a topic on
its own later). Suppose the regular expression is a · (b · c) and the input string
is abc. The derivatives from the first phase are as follows:

r1: a · (b · c)
r2: 1 · (b · c)
r3: (0 · (b · c)) + (1 · c)
r4: (0 · (b · c)) + ((0 · c) + 1)

3

According to the simple algorithm, wewould test whether r4 is nullable, which
in this case it indeed is. This means we can use the function mkeps to calculate
a value for how r4 was able to match the empty string. Remember that this
function gives preference for alternatives on the left‑hand side. However there
is only 1 on the very right‑hand side of r4 (underlined)

r4: (0 · (b · c)) + ((0 · c) + 1)

that matches the empty string. Therefore mkeps returns the value

v4 : Right(Right(Empty))

If there had been a 1 on the left, then mkeps would have returned something
of the form Left(. . .). The point is that from this value we can directly read off
which part of r4 matched the empty string: take the right‑alternative first, and
then the right‑alternative again, then you got to the 1.

Next we have to “inject” the last character, that is c in the running example,
into this value v4 in order to calculate how r3 could have matched the string c.
For this we call injection with inj(r3, c, v4). According to the definition of injwe
obtain

v3 : Right(Seq(Empty, Char(c)))

This is the correct result, because r3 needs to use the right‑hand alternative, and
then 1 needs tomatch the empty string and c needs tomatch c. Next we need to
inject back the letter b into v3. For this we call injection with inj(r2, b, v3). This
gives

v2 : Seq(Empty, Seq(Char(b), Char(c)))

which is again the correct result for how r2 matched the string bc. Finally we
need to inject back the letter a into v2 giving the final result. For this we call
injection with inj(r1, a, v2) and obtain

v1 : Seq(Char(a), Seq(Char(b), Char(c)))

This value corresponds to how the regular expression r1, namely a · (b · c),
matched the string abc.

There are a few auxiliary functions that are of interest when analysing this
algorithm. One is called flatten, written |_|, which extracts the string “underly‑
ing” a value. It is defined recursively as

|Empty| def
= []

|Char(c)| def
= [c]

|Left(v)| def
= |v|

|Right(v)| def
= |v|

|Seq(v1, v2)|
def
= |v1|@ |v2|

|Stars [v1, . . . , vn]|
def
= |v1|@ . . . @ |vn|

4

Using flatten we can see what are the strings behind the values calculated by
mkeps and inj. In our running example:

|v4|: []
|v3|: c
|v2|: bc
|v1|: abc

This indicates that inj indeed is injecting, or adding, back a character into the
value.

The definition of injmight still be very puzzling and each clause might look
arbitrary, but there is in fact a relatively simple idea behind it. Ultimately the
inj‑functions is determined by the derivative functions. For this consider one
of the “squares” from Figure 1:

r rder
der c

vderv
inj c

?

The input to the inj‑function is r (on the top left), c (the character to be injected)
and vder (bottom right). The output is the value v for how the regular expression
r matched the corresponding string. How does inj calculate this value? Well,
it has to analyse the value vder and transform it into the value v for the regular
expression r. The value vder corresponds to the rder‑regular expression which
is the derivative of r. Remember that vder is the value for how rder matches the
corresponding string where c has been chopped off.

For a concrete example, let r be r1 + r2. Then rder is of the form (der c r1) +
(der c r2). What are the possible values corresponding to rder? Well, they can be
only of the form Left(. . .) and Right(. . .). Therefore you have two cases in the
inj function – one for Left and one for Right.

inj (r1 + r2) c Left(v) def
= . . .

inj (r1 + r2) c Right(v) def
= . . .

Let’s look next at the sequence case where r = r1 · r2. What does the derivative
of r look like? According to the definition it is:

der c (r1 · r2)
def
= if nullable(r1)

then (der c r1) · r2 + der c r2
else (der c r1) · r2

5

As you can see there is a derivative in the if‑branch and another in the else‑
branch. In the if‑branch we have an alternative of the form _+ _. We already
know what the possible values are for such a regular expression, namely Left
or Right. Therefore we have in inj the two cases:

inj (r1 · r2) c Left(Seq(v1, v2))
def
= . . .

inj (r1 · r2) c Right(v) def
= . . .

In the first case we even know that it is not just a Left‑value, but Left(Seq(. . .)),
because the corresponding regular expression in the derivation is (der c r1) · r2.
Hence we know it must be a Seq‑value enclosed inside Left. The third clause for
r1 · r2 in the inj‑function

inj (r1 · r2) c Seq(v1, v2)
def
= . . .

corresponds to the else‑branch in the derivative. In this case we know the
derivative is of the form (der c r1) · r2 and therefore the value must be of the
form Seq(. . .).

Hopefully the inj‑function makes now more sense. I let you explain the r∗

case. What do the derivative of r∗ and the corresponding value look like? Does
this explain the shape of the clause?

inj (r∗) c Seq(v, Stars vs) def
= Stars(inj r c v :: vs)

If yes, you made sense of the left‑hand sides of the inj‑definition.
How about the right‑hand sides? Well, in the r∗ case for example we have

according to the square in the picture above a value vder which says how the
derivative rder matched the string. Since the derivative is of the form (der c r) ·
(r∗) the corresponding value is of the form Seq(v, Stars vs). But for r∗ we are
looking for a value for the original (top left) regular expression — so it cannot
be a value of the shape Seq(. . . , Stars . . .) because that is the shape for sequence
regular expressions. What we need is a value of the form Stars . . . (remember
the correspondence between values and regular expressions). This suggests to
define the right hand side as

. . . def= Stars(inj r c v :: vs)

It is a value of the right shape, namely Stars. It injected c into the first‑value,
which is in fact the value where we need to undo the derivative. Remember
again the shape of the derivative of r∗. In place where we chopped off the c, we
now need to do the inj of c. Therefore inj r c v in the definition above. That is
the same with the other clauses in inj.

Phew…Sweat…!#@A%…Unfortunately, there is a gigantic problem with
the described algorithm so far: it is very slow. To make it faster, we have to
include in all this the simplification from Lecture 2…andwhat rotten luck: sim‑
plification messes things up and we need to rectify the mess. This is what we
shall do next.

6

Simplification

Generally the matching algorithms based on derivatives do poorly unless the
regular expressions are simplified after each derivative step. But this is a bit
more involved in the algorithm of Sulzmann & Lu. So what follows might re‑
quire you to read several times before it makes sense and also might require
that you do some example calculations yourself. As a first example consider
the last derivation step in our earlier example:

r4 = der c r3 = (0 · (b · c)) + ((0 · c) + 1) (1)

Simplifying this regular expression would just give us 1. Running mkeps with
this 1 as input, however, would give us with the value Empty instead of

Right(Right(Empty))

that was obtained without the simplification. The problem is we need to recre‑
ate thismore complicated value, rather than just return Empty. Thiswill require
what I call rectification functions. They need to be calculated whenever a regular
expression gets simplified.

Rectification functions take a value as argument and return a (rectified)
value. In the example above the argument would be Empty and the output
Right(Right(Empty)). Before we define these rectification functions in general,
let us first take a look again at our simplification rules:

r · 0 7→ 0
0 · r 7→ 0
r · 1 7→ r
1 · r 7→ r
r + 0 7→ r
0+ r 7→ r
r + r 7→ r

Applying them to r4 in (1) will require several nested simplifications in order
end up with just 1. However, it is possible to apply them in a depth‑first, or
inside‑out, manner in order to calculate this simplified regular expression.

The rectification we can implement by letting simp return not just a (sim‑
plified) regular expression, but also a rectification function. Let us consider the
alternative case, r1 + r2, first. By going depth‑first, we first simplify the com‑
ponent regular expressions r1 and r2. This will return simplified versions, say
r1s and r2s, of the component regular expressions (if they can be simplified) but
also two rectification functions f1s and f2s. We need to assemble them in order
to obtain a rectified value for r1 + r2. In case r1s simplified to 0, we continue the
derivative calculation with r2s. The Sulzmann & Lu algorithm would return a
corresponding value, say v2s. But now this value needs to be “rectified” to the
value

Right(v2s)

7

The reason is that we look for the value that tells us how r1 + r2 could have
matched the string, not just r2 or r2s. Unfortunately, this is still not the right
value in general because there might be some simplifications that happened
inside r2 and for which the simplification function returned also a rectification
function f2s. So in fact we need to apply this one too which gives

Right(f2s(v2s))

This is now the correct, or rectified, value. Since the simplification will be done
in the first phase of the algorithm, but the rectification needs to be done to the
values in the second phase, it is advantageous to calculate the rectification as a
function, remember this function and then apply the value to this function dur‑
ing the second phase. So if we want to implement the rectification as function,
we would need to return

λv. Right(f2s(v))

which is the lambda‑calculus notation for a function that expects a value v and
returns everything after the dot where v is replaced by whatever value is given.

Let us package this idea with rectification functions into a single function
(still only considering the alternative case):

1 simp(r):
2 case r = r1 + r2

3 let (r1s, f1s) = simp(r1)

4 (r2s, f2s) = simp(r2)

5 case r1s = 0: return (r2s, λv. Right(f2s(v)))
6 case r2s = 0: return (r1s, λv.Left(f1s(v)))
7 case r1s = r2s: return (r1s, λv.Left(f1s(v)))
8 otherwise: return (r1s + r2s, falt(f1s, f2s))

We first recursively call the simplification with r1 and r2 (Lines 3 and 4). This
gives simplified regular expressions, r1s and r2s, as well as two rectification
functions f1s and f2s. We next need to test whether the simplified regular ex‑
pressions are 0 so as tomake further simplifications. In case r1s is 0 (Line 5), then
we can return r2s (the other alternative). However for this we need to build a
corresponding rectification function, which as said above is

λv. Right(f2s(v))

The case where r2s = 0 is similar: We return r1s and rectify with Left(_) and the
other calculated rectification function f1s. This gives

λv.Left(f1s(v))

The next case where r1s = r2s can be treated like the one where r2s = 0. We
return r1s and rectify with Left(_) and so on.

8

The otherwise‑case is slightly more complicated. In this case neither r1s nor
r2s are 0 and also r1s 6= r2s, which means no further simplification can be ap‑
plied. Accordingly, we return r1s + r2s as the simplified regular expression.
In principle we also do not have to do any rectification, because no simplifica‑
tion was done in this case. But this is actually not true: There might have been
simplifications inside r1s and r2s. We therefore need to take into account the
calculated rectification functions f1s and f2s. We can do this by defining a recti‑
fication function falt which takes two rectification functions as arguments and
applies them according to whether the value is of the form Left(_) or Right(_):

falt(f1, f2)
def
=

λv. case v = Left(v′): return Left(f1(v′))
case v = Right(v′): return Right(f2(v′))

The other interesting case with simplification is the sequence case. In this
case the main simplification function is as follows

simp(r): (continued)
case r = r1 · r2
let (r1s, f1s) = simp(r1)

(r2s, f2s) = simp(r2)

case r1s = 0: return (0, ferror)
case r2s = 0: return (0, ferror)
case r1s = 1: return (r2s, λv. Seq(f1s(Empty), f2s(v)))
case r2s = 1: return (r1s, λv. Seq(f1s(v), f2s(Empty)))
otherwise: return (r1s · r2s, fseq(f1s, f2s))

whereby in the last line fseq is again pushing the two rectification functions into
the two components of the Seq‑value:

fseq(f1, f2)
def
=

λv. case v = Seq(v1, v2): return Seq(f1(v1), f2(v2))

Note that in the case of r1s = 0 (similarly r2s) we use the function ferror for rec‑
tification. If you think carefully, then you will realise that this function will
actually never been called. This is because a sequence with 0 will never recog‑
nise any string and therefore the second phase of the algorithm would never
been called. The simplification function still expects us to give a function. So in
my own implementation I just returned a function that raises an error. In the
case where r1s = 1 (similarly r2s) we have to create a sequence where the first
component is a rectified version of Empty. Therefore we call f1s with Empty.

Since we only simplify regular expressions of the form r1 + r2 and r1 · r2
we do not have to do anything else in the remaining cases. The rectification
function will be just the identity, which in lambda‑calculus terms is just

λv. v

9

simp(r):
case r = r1 + r2
let (r1s, f1s) = simp(r1)

(r2s, f2s) = simp(r2)

case r1s = 0: return (r2s, λv. Right(f2s(v)))
case r2s = 0: return (r1s, λv.Left(f1s(v)))
case r1s = r2s: return (r1s, λv.Left(f1s(v)))
otherwise: return (r1s + r2s, falt(f1s, f2s))

case r = r1 · r2
let (r1s, f1s) = simp(r1)

(r2s, f2s) = simp(r2)

case r1s = 0: return (0, ferror)
case r2s = 0: return (0, ferror)
case r1s = 1: return (r2s, λv. Seq(f1s(Empty), f2s(v)))
case r2s = 1: return (r1s, λv. Seq(f1s(v), f2s(Empty)))
otherwise: return (r1s · r2s, fseq(f1s, f2s))

otherwise:
return (r, λv. v)

Figure 2: The simplification function that returns a simplified regular expres‑
sion and a rectification function.

This completes the high‑level version of the simplification function, which is
shown again in Figure 2. The Scala code for the simplification function is in
Figure 3.

We are now in the position to define a lexing function as follows:

lex r [] def
= if nullable(r) then mkeps(r)

else error
lex r c :: s def

= let (rsimp, frect) = simp(der(c, r))
inj r c frect(lex rsimp s)

This corresponds to the matches functionwe have seen in earlier lectures. In the
first clausewe are given an empty string, [], and need to testwhether the regular
expression is nullable. If yes, we can proceed normally and just return the value
calculated by mkeps. The second clause is for strings where the first character
is c, say, and the rest of the string is s. We first build the derivative of r with
respect to c; simplify the resulting regular expression. We continue lexing with
the simplified regular expression and the string s. Whatever will be returned as
value, we sill need to rectify using the frect from the simplification and finally
inject c back into the (rectified) value.

10

1 def F_ID(v: Val): Val = v
2 def F_RIGHT(f: Val => Val) = (v:Val) => Right(f(v))
3 def F_LEFT(f: Val => Val) = (v:Val) => Left(f(v))
4 def F_ALT(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
5 case Right(v) => Right(f2(v))
6 case Left(v) => Left(f1(v))
7 }
8 def F_SEQ(f1: Val => Val, f2: Val => Val) = (v:Val) => v match {
9 case Sequ(v1, v2) => Sequ(f1(v1), f2(v2))
10 }
11 def F_SEQ_Empty1(f1: Val => Val, f2: Val => Val) =
12 (v:Val) => Sequ(f1(Empty), f2(v))
13 def F_SEQ_Empty2(f1: Val => Val, f2: Val => Val) =
14 (v:Val) => Sequ(f1(v), f2(Empty))
15 def F_ERROR(v: Val): Val = throw new Exception("error")
16

17 // simplification of regular expressions returning also a
18 // rectification function; no simplification under STAR
19 def simp(r: Rexp): (Rexp, Val => Val) = r match {
20 case ALT(r1, r2) => {
21 val (r1s, f1s) = simp(r1)
22 val (r2s, f2s) = simp(r2)
23 (r1s, r2s) match {
24 case (ZERO, _) => (r2s, F_RIGHT(f2s))
25 case (_, ZERO) => (r1s, F_LEFT(f1s))
26 case _ => if (r1s == r2s) (r1s, F_LEFT(f1s))
27 else (ALT (r1s, r2s), F_ALT(f1s, f2s))
28 }
29 }
30 case SEQ(r1, r2) => {
31 val (r1s, f1s) = simp(r1)
32 val (r2s, f2s) = simp(r2)
33 (r1s, r2s) match {
34 case (ZERO, _) => (ZERO, F_ERROR)
35 case (_, ZERO) => (ZERO, F_ERROR)
36 case (ONE, _) => (r2s, F_SEQ_Empty1(f1s, f2s))
37 case (_, ONE) => (r1s, F_SEQ_Empty2(f1s, f2s))
38 case _ => (SEQ(r1s,r2s), F_SEQ(f1s, f2s))
39 }
40 }
41 case r => (r, F_ID)
42 }

Figure 3: The Scala code for the simplification function. The first part defines
some auxiliary functions for the rectification. The second part give the simpli‑
fication function.

11

Records

Remember we wanted to tokenize input strings, that means splitting strings
into their “word” components. Furthermore we want to classify each token
as being a keyword or identifier and so on. For this one more feature will be
required, which I call a record regular expression. While values encode how a
regular expression matches a string, records can be used to “focus” on some
particular parts of the regular expression and “forget” about others.

Let us look at an example. Suppose youhave the regular expression a · b+ a ·
c. Clearly this regular expression can only recognise two strings. But suppose
you are not interestedwhether it can recognise ab or ac, but rather if it matched,
then what was the last character of the matched string…either b or c. You can
do this by annotating the regular expression with a record, written in general
(x : r), where x is just an identifier (in my implementation a plain string) and r
is a regular expression. A record will be regarded as a regular expression. The
extended definition in Scala therefore looks as follows:

abstract class Rexp
case object ZERO extends Rexp
case object ONE extends Rexp
case class CHAR(c: Char) extends Rexp
case class ALT(r1: Rexp, r2: Rexp) extends Rexp
case class SEQ(r1: Rexp, r2: Rexp) extends Rexp
case class STAR(r: Rexp) extends Rexp
case class REC(x: String , r: Rexp) extends Rexp

Since we regard records as regular expressions we need to extend the functions
nullable and der. Similarly mkeps and inj need to be extended. This means we
also need to extend the definition of values, which in Scala looks as follows:

abstract class Val
case object Empty extends Val
case class Chr(c: Char) extends Val
case class Sequ(v1: Val, v2: Val) extends Val
case class Left(v: Val) extends Val
case class Right(v: Val) extends Val
case class Stars(vs: List[Val]) extends Val
case class Rec(x: String , v: Val) extends Val

Let us now look at the purpose of records more closely and let us return to our
question whether the string terminated in a b or c. We can do this as follows:
we annotate the regular expression ab + ac with a record as follows

a · (x : b) + a · (x : c)

This regular expression can still only recognise the strings ab and ac, but we can
now use a function that takes a value and returns all records. I call this function
env for environment…it builds a list of identifiers associated with a string. This
function can be defined as follows:

12

env(Empty) def
= []

env(Char(c)) def
= []

env(Left(v)) def
= env(v)

env(Right(v)) def
= env(v)

env(Seq(v1, v2))
def
= env(v1)@ env(v2)

env(Stars [v1, . . . , vn])
def
= env(v1)@ . . . @ env(vn)

env(Rec(x : v)) def
= (x : |v|) :: env(v)

where in the last clause we use the flatten function defined earlier. As can be
seen, the function env “picks” out all underlying stringswhere a record is given.
Since there can be more than one, the environment will potentially contain
many “records”. If we now postprocess the value calculated by lex extract‑
ing all records using env, we can answer the question whether the last element
in the string was an b or a c. Lets see this in action: if we use a · b + a · c and ac
the calculated value will be

Right(Seq(Char(a), Char(c)))

If we use instead a · (x : b) + a · (x : c) and use the env function to extract the
recording for x we obtain

[(x : c)]

If we had given the string ab instead, then the record would have been [(x : b)].
The fun starts if we iterate this. Consider the regular expression

(a · (x : b) + a · (y : c))∗

and the string ababacabacab. This string is clearly matched by the regular ex‑
pression, but we are only interested in the sequence of bs and cs. Using env we
obtain

[(x : b), (x : b), (y : c), (x : b), (y : c), (x : b)]

While this feature might look silly, it is in fact quite useful. For example if we
want to match the name of an email we might use the regular expression

(name : [a‑z0‑9__ .−]+) · @ · (domain : [a‑z0‑9−]+) · . · (top_level : [a‑z .]{2,6})

Then if we match the email address

christian.urban@kcl.ac.uk

we can use the env function and find out what the name, domain and top‑level
part of the email address are:

13

write "Fib";
read n;
minus1 := 0;
minus2 := 1;
while n > 0 do {

temp := minus2;
minus2 := minus1 + minus2;
minus1 := temp;
n := n - 1

};
write "Result";
write minus2

Figure 4: The Fibonacci program in the While‑language.

[(name : christian.urban), (domain : kcl), (top_level : ac.uk)]

Recall that we want to lex a little programming language, called the While‑
language. A simple program in this language is shown in Figure 4. The main
keywords in this language are while, if, then and else.2 As usual we have
syntactic categories for identifiers, operators, numbers and so on. For this we
would need to design the corresponding regular expressions to recognise these
syntactic categories. I let you do this design task. Having these regular expres‑
sions at our disposal, we can form the regular expression

WhileRegs def
=

(k, KeyWords) +
(i, Ids) +
(o, Ops) +
(n, Nums) +
(s, Semis) +
(p, (LParens + RParens)) +
(b, (Begin + End)) +
(w, WhiteSpaces)

*

and ask the algorithm by Sulzmann & Lu to lex, say the following string

"if true then then 42 else +"
2Contrast this with the COBOL programming language, whichwas developed around 1960 and

thought to be dead for many decades—even your friendly lecturer is not old enough to have been
taught this language. Anyway, this language had over 600 keywords (or what they called reserved
words). Interestingly though this language is still used in 2020: during the height of Corona crisis
the State of New Jewrsey in the US was looking for COBOL programers who could fix the state’s
national insurance webpage. You were probably paid in gold and diamonds, if you were able to
program in COBOL. If you fixed their webpage, surely you were allowed to marry the governer’s
son/daughter.

14

By using the records and extracting the environment, the result is the following
list:

(k, if),
(w, " "),
(i, true),
(w, " "),
(k, then),
(w, " "),
(k, then),
(w, " "),
(n, 42),
(w, " "),
(k, else),
(w, " "),
(o, +)

Typically we are not interested in the whitespaces and comments and would
filter them out: this gives

(k, if),
(i, true),
(k, then),
(k, then),
(n, 42),
(k, else),
(o, +)

which will be the input for the next phase of our compiler.

15

