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Lexical Analysis

• Goal: Partition input string into meaningful elements called tokens

• Token is a syntactic category:
- In English: verbs, nouns, pronouns, adverbs, adjectives , ...
- In programming language: identifier, integer, keyword, semicolon, ...

Input:

i f ( x = = 0 ) x = x + 1 ;

Output:

IF , LPAREN , ID(x) , EQUALS , INTLIT(0) , RPAREN , ID(x) ,
EQSIGN , ID(x) , PLUS , INTLIT(1) , SEMICOLON
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Lexical Analysis

• A lexical analyzer (“lexer” or “scanner”) has the following tasks:

1) Recognize substrings corresponding to tokens

2) Return tokens with their categories

• There are finitely many token categories
- Identifier
- LPAREN
- RPAREN
- COLON
- ... (many, but finitely many)

• There is unbounded number of instances of token classes like
Identifier
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Lexical Analysis

• Output of lexical analysis is a stream of tokens
which is input to parser

• Parser relies on token category
- For example, it treats identifiers and keywords differently

• We use token categories when writing grammars for parsing

• Regular languages can be used to describe valid tokens of almost
every programming language
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Languages

• Alphabet Σ: Finite set of elements

• For lexer: Characters
• For parser: Token classes

• Words (strings): Sequence of elements from the alphabet Σ

- Special case: empty word ε

• Σ∗: Set of all words over Σ

• Language over Σ: a subset of Σ∗
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Languages Example

• Σ = {a, b}
• Σ∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, · · · }

Examples of two languages, subsets of Σ∗:

• L1 = {a, bb, ab} (finite language, three words)

• L2 = {ab, abab, ababab, · · · } = {(ab)n|n ≥ 1} (infinite language)
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Operation on Languages

Operation Definition
union of L1 and L2

L1 ∪ L2 = {s | s ∈ L1 ∨ s ∈ L2}written L1 ∪ L2

concatenation of L1 and L2
L1.L2 = {st | s ∈ L1 ∧ t ∈ L2}written L1.L2

Kleene closure of L
L∗ =

⋃∞
i=0 L

i

written L∗
positive closure of L

L+ =
⋃∞

i=1 L
i

written L+

• Li is recursively defined

L0 = {ε} (the language consisting only of the empty string)

L1 = L

Li+1 = {wv : w ∈ Li ∧ v ∈ L} for each i > 0
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Star Operation: Example

• L = {a, ab}
• L.L = {aa, aab, aba, abab}
• L∗ = {ε, a, ab, aa, aab, aba, abab, aaa, ...}
• = {w | immediately before each b there is a }
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Star Operation: Example

• Star allows us to define infinite languages starting from finite ones

• We can use it to describe some of those infinite but reasonable
languages

• When is L∗ finite?
• Only in these two cases:

• ∅∗ = {ε} (because ∅0 = {ε})
• {ε}∗ = {ε}
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Properties of Words

• Let wi ∈ Σ∗ be a word

• Concatenation is associative:

(w1.w2).w3 = w1.(w2.w3)

• Empty word ε is left and right identity:

w.ε = w

ε.w = w

• Cancellation property

- If w1.w3 = w1.w2 then w3 = w2

- If w3.w1 = w2.w1 then w3 = w2

• There are many other properties, many easily provable from
definition of operations

10



Properties of Words

Length of a word

• |ε| = 0

• |c| = 1 if c ∈ Σ

• |w1.w2| = |w1|+ |w2| wi ∈ Σ∗

Reverse of a word

• ε−1 = ε

• c−1 = c if c ∈ Σ

• (w1.w2)−1 = w−12 .w−11
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Fact about Indexing Concatenation

• Concatenation of w and v has these letters:

w(0) · · ·w(|w|−1).v(0) · · · v(|v|−1)

• Thus, for every i where 0 ≤ i ≤ |w|+ |v| − 1

(wv)(i) = w(i), if i < |w|
(wv)(i) = v(i−|w|), if i ≥ |w|

12



Regular Expressions

• Notations to describe regular languages
• Regular expressions (RE)
• Regular grammars

• Regular expression over alphabet Σ:
1. ε is a RE denoting the set {ε}
2. if a ∈ Σ, then a is a RE denoting {a}
3. if r and s are REs, denoting L(r) and L(s), then:
- r | s is a RE denoting L(r) ∪ L(s)

- r . s is a RE denoting L(r).L(s)

- r∗ is a RE denoting L(r)∗

• Precedence: Closure then Concatenation then Alternation

13



Regular Expressions

• Regular expressions are just a notation for some particular operations
on languages

letter (letter | digit)*

• Denotes the set

letter (letter ∪ digit)*

• Any finite language {w1, · · · , wn} can be described using
regular expression

w1 | · · · | wn
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Regular Expressions

Some RE operators can be defined in terms of previous ones

• [a..z] = a|b| · · · |z (use ASCII ordering)

• e? (optional expression) = e | ε
• e+ (repeat at least once)

• !e (complement) = Σ ∗ \e
• e1&e2 (intersection) = !(!e1 | !e2)
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Exercise

Find a regular expression that generates all alternating sequences of 0

and 1 with arbitrary length (including lengths zero, one, two, ...).

For example, the alternating sequences of length one are 0 and 1, length
two are 01 and 10, length three are 010 and 101. Note that no two
adjacent character can be the same in an alternating sequence.
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