CSCI 742 - Compiler Construction

Lecture 3
Introduction to Regular Expressions
Instructor: Hossein Hojjat

January 22, 2018

Compiler Phases

Source Code
(concrete syntax)

@ Regular Expressions for Tokens
e

Token Stream E@H
Syntax Analysis

Context-Free .
Grammar (R (Parsing)

‘if (x|=|=[oD)| |xI=x[H1|;

Lexical Analysis

Abstract Syntex Tree e
(AST)

Semantic Analysis
(Name Analysis,
Type Analysis, ...)

Attributed AST

Code Generation

Machine Code

Lexical Analysis

e Goal: Partition input string into meaningful elements called tokens
e Token is a syntactic category:

- In English: verbs, nouns, pronouns, adverbs, adjectives , ...
- In programming language: identifier, integer, keyword, semicolon, ...

IF , LPAREN , ID(x) , EQUALS , INTLIT(0) , RPAREN , ID(x) ,
EQSIGN , ID(x) , PLUS , INTLIT(1) , SEMICOLON

Lexical Analysis

e A lexical analyzer (“lexer”" or “scanner”) has the following tasks:
1) Recognize substrings corresponding to tokens

2) Return tokens with their categories

e There are finitely many token categories
- ldentifier

LPAREN

- RPAREN

- COLON

- ... (many, but finitely many)

e There is unbounded number of instances of token classes like
Identifier

Lexical Analysis

e Output of lexical analysis is a stream of tokens
which is input to parser

e Parser relies on token category
- For example, it treats identifiers and keywords differently
e We use token categories when writing grammars for parsing

e Regular languages can be used to describe valid tokens of almost
every programming language

e Alphabet 3: Finite set of elements
e For lexer: Characters
e For parser: Token classes

Words (strings): Sequence of elements from the alphabet &

- Special case: empty word €
e Yx: Set of all words over 2

e Language over X: a subset of Xx

Languages Example

o ¥ ={a,b}

e Y« = {€,a,b,aa,ab,ba,bb, aaa, aab, aba, - - - }
Examples of two languages, subsets of Yx:

e L1 ={a,bb,ab} (finite language, three words)
e Ly = {ab,abab, ababab, - --} = {(ab)™|n > 1} (infinite language)

Operation on Languages

Operation Definition

union of Ly and Lo
written L1 U Lo
concatenation of L; and Lo
written Lq.Lo
Kleene closure of L

L1UL2:{S‘SEL1\/SEL2}

Ll.LQZ{St|S€L1/\t€L2}

L=)2 L
written Lx U"ZO

positive closure of L

L+ =2, L
written L+ +=Ui=

e L' is recursively defined
LY = {¢} (the language consisting only of the empty string)
L'=1
L = {wv:w e L* Av € L} for each i > 0

Star Operation: Example

L = {a,ab}
e L.L = {aa,aab,aba,abab}

e Lx = {¢,a,ab,aa,aab, aba,abab, aaa, ...}

= {w | immediately before each b there is a }

Star Operation: Example

e Star allows us to define infinite languages starting from finite ones

e We can use it to describe some of those infinite but reasonable
languages

Star Operation: Example

e Star allows us to define infinite languages starting from finite ones

e We can use it to describe some of those infinite but reasonable

languages

e When is Lx* finite?

Star Operation: Example

Star allows us to define infinite languages starting from finite ones

e We can use it to describe some of those infinite but reasonable
languages

e When is Lx* finite?

Only in these two cases:
0 = {e} (because §° = {¢})
{e}r ={¢}

Properties of Words

e Let w; € Yx be a word
e Concatenation is associative:
(wy.we).w3 = wy.(wy.ws)

e Empty word € is left and right identity:

w.e =w

€W =w
e Cancellation property
- If wyaws = wy.wy then w3 = wey

- If ws.wy = wo.wy then w3 = wey

e There are many other properties, many easily provable from
definition of operations

10

Properties of Words

Length of a word

e |e[=0
o |c|=1 ifceX

o |wi.ws| = |wi| + |we| w; € Lk

Reverse of a word

ec =c¢ ifceX

o (wywy) ' =wytawrt

11

Fact about Indexing Concatenation

e Concatenation of w and v has these letters:

Weo) " W(lw|-1)-Y(0) " * " V(jv|-1)

e Thus, for every i where 0 < < |w|+ |v| =1

(wo) sy = we, if i < ||
(wWv) () = V(i—|w))s if i > |w|

12

Regular Expressions

e Notations to describe regular languages

e Regular expressions (RE)
e Regular grammars

e Regular expression over alphabet 3:
1. eis a RE denoting the set {¢}
2. if a € X, then a is a RE denoting {a}
3. if r and s are REs, denoting L(r) and L(s), then:
- r | s is a RE denoting L(r) U L(s)
- r.s is a RE denoting L(r).L(s)
- r+ is a RE denoting L(r)x

e Precedence: Closure then Concatenation then Alternation

13

Regular Expressions

e Regular expressions are just a notation for some particular operations
on languages

letter (letter | digit)*
e Denotes the set
letter (letter U digit)*

e Any finite language {wy, - ,w,} can be described using
regular expression

14

Regular Expressions

Some RE operators can be defined in terms of previous ones

[a..z] = a|b| - - - |z (use ASCII ordering)
e? (optional expression) = e | €

e+ (repeat at least once)

le (complement) = ¥ « \e

e1&ey (intersection) = !(leg | lea)

15

Exercise

Find a regular expression that generates all alternating sequences of 0
and 1 with arbitrary length (including lengths zero, one, two, ...).

For example, the alternating sequences of length one are 0 and 1, length
two are 01 and 10, length three are 010 and 101. Note that no two
adjacent character can be the same in an alternating sequence.

16

