
Automata and
Formal Languages (9)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

AFL 09, King’s College London – p. 1/13

Using a compiler,
how can you mount the
perfect attack against a system?

AFL 09, King’s College London – p. 2/13

What is a perfect attack?

1 you can potentially completely take over a target
system

2 your attack is (nearly) undetectable
3 the victim has (almost) no chance to recover

AFL 09, King’s College London – p. 3/13

clean
compiler

login
(src)

login
(bin)■

AFL 09, King’s College London – p. 4/13

clean
compiler

login
(src)

login
(bin)

■

AFL 09, King’s College London – p. 4/13

hacked
compiler

login
(src)

login
(bin)■

AFL 09, King’s College London – p. 4/13

V0.01

Scala
host language

my compiler (src)

V0.02

Scala

…
V1.00

Scala

V1.00

V1.01

V1.01

V1.02

…

…

no host language
needed

AFL 09, King’s College London – p. 5/13

V0.01

Scala
host language

my compiler (src)
V0.02

Scala

…
V1.00

Scala

V1.00

V1.01

V1.01

V1.02

…

…

no host language
needed

AFL 09, King’s College London – p. 5/13

V0.01

Scala
host language

my compiler (src)
V0.02

Scala

…
V1.00

Scala

V1.00

V1.01

V1.01

V1.02

…

…

no host language
needed

AFL 09, King’s College London – p. 5/13

V0.01

Scala
host language

my compiler (src)
V0.02

Scala

…
V1.00

Scala

V1.00

V1.01

V1.01

V1.02

…

…

no host language
needed

AFL 09, King’s College London – p. 5/13

Hacking Compilers

Ken Thompson
Turing Award, 1983

Ken Thompson showed how to hide
a Trojan Horse in a compiler without
leaving any traces in the source code.
No amount of source level verifi-
cation will protect you from such
Thompson-hacks.
Therefore in safety-critical systems it
is important to rely on only a very
small TCB.

AFL 09, King’s College London – p. 6/13

Hacking Compilers

Ken Thompson
Turing Award, 1983

Ken Thompson showed how to hide
a Trojan Horse in a compiler without
leaving any traces in the source code.
No amount of source level verifi-
cation will protect you from such
Thompson-hacks.
Therefore in safety-critical systems it
is important to rely on only a very
small TCB.

AFL 09, King’s College London – p. 6/13

1) Assume you ship the compiler as
binary and also with sources.

2) Make the compiler aware when it
compiles itself.

3) Add the Trojan horse.
4) Compile.
5) Delete Trojan horse from the sources

of the compiler.
6) Go on holiday for the rest of your

life. ;o)

Hacking Compilers

Ken Thompson
Turing Award, 1983

Ken Thompson showed how to hide
a Trojan Horse in a compiler without
leaving any traces in the source code.
No amount of source level verifi-
cation will protect you from such
Thompson-hacks.
Therefore in safety-critical systems it
is important to rely on only a very
small TCB.

AFL 09, King’s College London – p. 6/13

Our Compiler

lexer parser code gen

lexer input: string
lexer output: sequence of tokens

(white space and comments filtered out)
parser output: abstract syntax tree
code gen output: assembler byte code /

assembler machine code
AFL 09, King’s College London – p. 7/13

For-Loops

for Id := AExp upto AExp do
Block

for i := 2 upto 4 do {
write i

}

AFL 09, King’s College London – p. 8/13

While-Language
Stmt → skip

| Id := AExp
| if BExp then Block else Block
| while BExp do Block
| write Id
| read Id

Stmts → Stmt ; Stmts
| Stmt

Block → {Stmts}
| Stmt

AExp → …
BExp → …

AFL 09, King’s College London – p. 9/13

Interpreter

eval(n, E) def
= n

eval(x, E) def
= E(x) lookup x in E

eval(a1 + a2, E) def
= eval(a1, E) + eval(a2, E)

eval(a1 − a2, E) def
= eval(a1, E)− eval(a2, E)

eval(a1 ∗ a2, E) def
= eval(a1, E) ∗ eval(a2, E)

eval(a1 = a2, E) def
= eval(a1, E) = eval(a2, E)

eval(a1 != a2, E) def
= ¬(eval(a1, E) = eval(a2, E))

eval(a1 < a2, E) def
= eval(a1, E) < eval(a2, E)

AFL 09, King’s College London – p. 10/13

Interpreter (2)

eval(skip, E) def
= E

eval(x := a, E) def
= E(x 7→ eval(a, E))

eval(if b then cs1 else cs2, E) def
=

if eval(b, E) then eval(cs1, E)
else eval(cs2, E)

eval(while b do cs, E) def
=

if eval(b, E)
then eval(while b do cs, eval(cs, E))
else E

eval(write x, E) def
= { println(E(x)) ; E }

AFL 09, King’s College London – p. 11/13

Compiling Writes
write x

.method public static write(I)V (library function)
.limit locals 5
.limit stack 5
iload 0
getstatic java/lang/System/out Ljava/io/PrintStream;
swap
invokevirtual java/io/PrintStream/println(I)V
return

.end method

iload E(x)
invokestatic write(I)V

AFL 09, King’s College London – p. 12/13

.class public XXX.XXX

.super java/lang/Object

.method public <init>()V
aload_0
invokenonvirtual java/lang/Object/<init>()V
return

.end method

.method public static main([Ljava/lang/String;)V
.limit locals 200
.limit stack 200

(here comes the compiled code)

return
.end method

AFL 09, King’s College London – p. 13/13

