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Using a compiler,
how can you mount the
perfect attack against a system?
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What is a perfect attack?

1 you can potentially completely take over a target
system

2 your attack is (nearly) undetectable
3 the victim has (almost) no chance to recover
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clean
compiler

login
(src)

login
(bin)■
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login
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login
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Hacking Compilers

Ken Thompson
Turing Award, 1983

Ken Thompson showed how to hide
a Trojan Horse in a compiler without
leaving any traces in the source code.
No  amount  of  source  level  verifi-
cation  will  protect  you  from  such
Thompson-hacks.
Therefore in safety-critical systems it
is  important  to  rely  on only  a  very
small TCB.
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1) Assume you ship the compiler as
binary and also with sources.

2) Make the compiler aware when it
compiles itself.

3) Add the Trojan horse.
4) Compile.
5) Delete Trojan horse from the sources

of the compiler.
6) Go on holiday for the rest of your

life. ;o)
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Our Compiler

lexer parser code gen

lexer input: string
lexer output: sequence of tokens

(white space and comments filtered out)
parser output: abstract syntax tree
code gen output: assembler byte code /

assembler machine code
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For-Loops

for Id := AExp upto AExp do
Block

for i := 2 upto 4 do {
write i

}
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While-Language
Stmt → skip

| Id := AExp
| if BExp then Block else Block
| while BExp do Block
| write Id
| read Id

Stmts → Stmt ; Stmts
| Stmt

Block → {Stmts}
| Stmt

AExp → …
BExp → …
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Interpreter

eval(n, E) def
= n

eval(x, E) def
= E(x) lookup x in E

eval(a1 + a2, E) def
= eval(a1, E) + eval(a2, E)

eval(a1 − a2, E) def
= eval(a1, E)− eval(a2, E)

eval(a1 ∗ a2, E) def
= eval(a1, E) ∗ eval(a2, E)

eval(a1 = a2, E) def
= eval(a1, E) = eval(a2, E)

eval(a1 != a2, E) def
= ¬(eval(a1, E) = eval(a2, E))

eval(a1 < a2, E) def
= eval(a1, E) < eval(a2, E)
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Interpreter (2)

eval(skip, E) def
= E

eval(x := a, E) def
= E(x 7→ eval(a, E))

eval(if b then cs1 else cs2, E) def
=

if eval(b, E) then eval(cs1, E)
else eval(cs2, E)

eval(while b do cs, E) def
=

if eval(b, E)
then eval(while b do cs, eval(cs, E))
else E

eval(write x, E) def
= { println(E(x)) ; E }
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Compiling Writes
write x

.method public static write(I)V (library function)
.limit locals 5
.limit stack 5
iload 0
getstatic java/lang/System/out Ljava/io/PrintStream;
swap
invokevirtual java/io/PrintStream/println(I)V
return

.end method

iload E(x)
invokestatic write(I)V
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.class public XXX.XXX

.super java/lang/Object

.method public <init>()V
aload_0
invokenonvirtual java/lang/Object/<init>()V
return

.end method

.method public static main([Ljava/lang/String;)V
.limit locals 200
.limit stack 200

(here comes the compiled code)

return
.end method
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